KATA PENGANTAR

DAFTAR ISI

KATA PENGANTAR	Error! Bookmark not defined.
DAFTAR ISI	1
DAFTAR TABEL	4
DAFTAR GAMBAR	6
BAB 1	Error! Bookmark not defined.
PENDAHULUAN	Error! Bookmark not defined.
1.1 LATAR BELAKANG	Error! Bookmark not defined.
1.2 IDENTIFIKASI MASALAH	Error! Bookmark not defined.
1.3 RUMUSAN MASALAH	Error! Bookmark not defined.
1.4 MAKSUD DAN TUJUAN	Error! Bookmark not defined.
1.5 BATASAN MASALAH	Error! Bookmark not defined.
1.6 REFERENSI PENELITIAN	Error! Bookmark not defined.
BAB II	Error! Bookmark not defined.
GAMBARAN UMUM	Error! Bookmark not defined.
2.1 KONDISI GEOGRAFIS	Error! Bookmark not defined.
2.2 WILAYAH ADMINISTRATIF	Error! Bookmark not defined.
2.3 KONDISI DEMOGRAFI	Error! Bookmark not defined.
2.4 KONDISI TRANSPORTASI	Error! Bookmark not defined.
2.5 KONDISI WILAYAH STUDI	Error! Bookmark not defined.
BAB III	Error! Bookmark not defined.
KAJIAN PUSTAKA	Error! Bookmark not defined.
3.1 MANAJEMEN REKAYASA LALULINTAS	Error! Bookmark not defined.
3.2 JALUR SEPEDA	Error! Bookmark not defined.
3.3 TEKNIS PENYEWAAN SEPEDA (Bike Sharing System defined.	em) Error! Bookmark not
3.4 TEKNIS ANALISA PENENTUAN JALUR SEPEDA	Error! Bookmark not defined.
BAB IV	Error! Bookmark not defined.
METODOLOGI PENELITIAN	Frrort Bookmark not defined

	4.1 ALUR PIKIR	.Error! Bookmark not defined.
	4.2 DESAIN PENELITIAN	Error! Bookmark not defined.
	4.3 BAGAN ALIR PENELITIAN	.Error! Bookmark not defined.
	4.4 METODE PENELITIAN DAN ANALISIS	.Error! Bookmark not defined.
В	AB V	.Error! Bookmark not defined.
4	NALISIS DAN PEMECAHAN MASALAH	.Error! Bookmark not defined.
	5.1 KONDISI EKSISTING	.Error! Bookmark not defined.
	5.2 KARAKTERISTIK RESPONDEN DALAM BERSEPEDA	.Error! Bookmark not defined.
	5.3 USULAN RENCANA JALUR SPEDA	.Error! Bookmark not defined.
	5.4 PERUBAHAN KONDISI KINERJA JALAN RENCANA	.Error! Bookmark not defined.
	$5.5\ PERBANDINGAN\ KINERJA\ JALAN\ EKSISTING\ DAN$ not defined.	RENCANAError! Bookmark
	5.6 PERANGKINGAN RUTE JALUR SEPEDA	.Error! Bookmark not defined.
	5.7 SISTEM OPERASIONAL <i>BIKE SHARING SYSTEM</i> DI	
	5.8 PRASARANA PENUNJANG JALUR SEPEDA	.Error! Bookmark not defined.
В	AB VI	Error! Bookmark not defined.
P	ENUTUP	.Error! Bookmark not defined.
	6.1 KESIMPULAN	.Error! Bookmark not defined.
	6.2 SARAN	.Error! Bookmark not defined.

DAFTAR TABEL

Tabel III. 1Kapasitas Dasar Error! Bookmark not defined
Tabel III. 2 Faktor Penyesuaian Pemisah Arah (FCsp)Error! Bookmark not
defined.
Tabel III. 3 Faktor Penyesuaian Lebar Jalur (FCw) Error! Bookmark not defined
Tabel III. 4Faktor Penyesuaian Hambatan Samping (FCssf) Error! Bookmark not
defined.
Tabel III. 5 Faktor Penyesuaian Ukuran Kota (FCcs) Error! Bookmark not defined
Tabel III. 6 Kecepatan Arus Bebas (FV0) Untuk Jalan Perkotaan Error! Bookmark
not defined.
Tabel III. 7Faktor Penyesuaian Untuk Pengaruh Hambatan Samping dan Lebar Bahu
(FFVs) Error! Bookmark not defined
Tabel III. 8 Faktor Penyesuaian Untuk Pengaruh Hambatan Samping dan Jarak
Kereb Penghalang Error! Bookmark not defined
Tabel III. 9 Faktor Penyesuaian Ukuran Kota Pada Kecepatan Arus Bebas Kendaraan
Ringan (FFVcs) Error! Bookmark not defined
Tabel III. 10 Tingkat Pelayanan Error! Bookmark not defined
Tabel III. 11 Volume Simpang Error! Bookmark not defined
Tabel III. 12 Faktor Penyesuaian Jumlah Penduduk (Fcf) Error! Bookmark not
defined.
Tabel III. 13 Faktor Penyesuaian Hambatan Samping (Fsf) Error! Bookmark not
defined.
Tabel III. 14 Tingkat Pelayanan Simpang Error! Bookmark not defined
Tabel V. 1Inventarisasi Ruas Yang Dapat Diakses Error! Bookmark not defined
Tabel V. 2 Kinerja Keseluruhan Ruas Jalan Error! Bookmark not defined
Tabel V. 3 Kinerja Simpang Kencana Error! Bookmark not defined
Tabel V. 4 Antrian dan Tundaan Simpang Kencana. Error! Bookmark not defined
Tabel V. 5 Kinerja Simpang MT. Haryono Error! Bookmark not defined
Tabel V. 6 Antrian dan Tundaan Simpang MT. Haryono Error! Bookmark not
defined.

Tabel V. 8 Antrian dan Tundaan Simpang Alun alun Error! Bookmark not defined.
Tabel V. 9 Inventarisasi Ruas Jalan Rute 1 Error! Bookmark not defined.
Tabel V. 10 Kinerja Ruas Jalan Rute 1 Error! Bookmark not defined.
Tabel V. 11 Kinerja Simpang Kencana Eksisting Error! Bookmark not defined.
Tabel V. 12 Kinerja Simpang MT Haryono Eksisting Error! Bookmark not defined.
Tabel V. 13 Kinerja Simpang Alun alun Eksisting Error! Bookmark not defined.
Tabel V. 14 Inventarisasi Ruas Jalan Rute 2 Error! Bookmark not defined.
Tabel V. 15 Kinerja Ruas Jalan Rencana Rute 2 Eksisting Error! Bookmark not
defined.
Tabel V. 16 Kinerja Simpang Kencana Eksisting Error! Bookmark not defined.
Tabel V. 17 Kinerja Simpang Alun alun Eksisting Error! Bookmark not defined.
Tabel V. 18 Perubahan Inventarisasi Ruas Jalan Rencana Rute 1 Error! Bookmark
not defined.
Tabel V. 19 Perubahan Kinerja Ruas Jalan Rencana Rute 1 Error! Bookmark not
defined.
Tabel V. 20 Perubahan Kinerja Simpang Yang di Lalui Rencana Rute 1Error!
Bookmark not defined.
Tabel V. 21Perubahan Tundaan Simpang Yang Dilalui Rencana Rute 1Error!
Bookmark not defined.
Tabel V. 22Perubahan Inventarisasi Ruas Jalan Rencana Rute 2 Error! Bookmark
not defined.
Tabel V. 23Perubahan Kinerja Ruas Jalan Rencana Rute 2 Error! Bookmark not
defined.
Tabel V. 24 Perubahan Kinerja Simpang Yang Dilalui Rencana Rute 2 Error!
Bookmark not defined.
Tabel V. 25 Perubahan Antrian Dan Tundaan Yang Akan Dilalui Rencana Rute 2
Error! Bookmark not defined.
Tabel V. 26 Perbandingan Kinerja Ruas Jalan Rute 1 Error! Bookmark not
defined.
Tabel V. 27 Perbandingan Tingkat Pelayanan Ruas Jalan Rute Satu Error!
Bookmark not defined.

Tabel V. 28 Perubandingan Kinerja Ruas Jalan Rute 2 Error! Bookmark not
defined.
Tabel V. 29 Perbandingan Tingkat Pelayanan Ruas Jalan Rencana Rute 2 Error!
Bookmark not defined.
Tabel V. 30 Perbandingan Kinerja Simpang Pada Rencana Rute 1. Error! Bookmark
not defined.
Tabel V. 31 Perbandingan Tingkat Pelayanan Simpang Rencana Rute 1Error!
Bookmark not defined.
Tabel V. 32 Perbandingan Tundaan Simpang Error! Bookmark not defined.
Tabel V. 33 Perbandingan Kinerja Simpang Pada Rencana Rute 2. Error! Bookmark
not defined.
Tabel V. 34 Perbandingan Tingkat Pelayanan Simpang Pada Rencana Rute 2 Error!
Bookmark not defined.
Tabel V. 35Perbandingan Tundaan Pada Rencana Rute 2 Error! Bookmark not
defined.
Tabel V. 36 Perangkingan Usulan Rute Error! Bookmark not defined.
Tabel V. 37 Perubahan Inventarisasi Rute Terpilih Error! Bookmark not defined.
Tabel V. 38 Perubahan Kpasitas Jalan Rute Terpilih Error! Bookmark not defined.
Tabel V. 39 Perubahan V/C Ratio Rute Terpilih Error! Bookmark not defined.
Tabel V. 40 Tingkat Pelayanan Rute Terpilih Error! Bookmark not defined.
Tabel V. 41Rekomendasi Usulan Perlengkapan Jalan Untuk Jalur Sepeda Error!
Bookmark not defined.

DAFTAR GAMBAR

Gambar II. 2 Peta Admnistrasi Kabupaten Grobogan Error! Bookmark not
defined.
Gambar III. 1 Lebar Minimum Jalur Sepeda Error! Bookmark not defined.
Gambar III. 2 Contoh Marka Lambang Error! Bookmark not defined.
Gambar III. 3 Contoh Marka Melintang Error! Bookmark not defined.
Gambar III. 4 Contoh Marka Membujur Error! Bookmark not defined.
Gambar III. 5 Rambu Perintah Error! Bookmark not defined.
Gambar III. 6 Rambu Petunjuk Error! Bookmark not defined.
Gambar III. 7 Rambu Peringatan Error! Bookmark not defined.
Gambar III. 8 Rambu Larangan Error! Bookmark not defined.
Gambar III. 9 Prototype Bike Sharing di Kota Bandung Error! Bookmark not
defined.
Gambar IV. 1 Alur Pikir Error! Bookmark not defined.
Gambar IV. 2 Bagan Alir Penelitian Error! Bookmark not defined.
Gambar V. 1 Peta Rencana Rute 1 Error! Bookmark not defined.
Gambar V. 2 Peta Rencana Rute 2 Error! Bookmark not defined.
Gambar V. 3 Terminal System Error! Bookmark not defined.
Gambar V. 4 Docking Otomatis Error! Bookmark not defined.
Gambar V. 5 Smart Card Error! Bookmark not defined.
Gambar V. 6 Tata Cara Pendaftaran Error! Bookmark not defined.
Gambar V. 7 Tata Cara Penyewaan Sepeda Error! Bookmark not defined.
Gambar V. 8Tata Pengembalian Sepeda Error! Bookmark not defined.
Gambar V. 9 Penentuan Fasilitas Jalur Sepeda Error! Bookmark not defined.
Gambar V. 10 Penentuan Pengaman Jalur Sepeda Error! Bookmark not defined.
Gambar V. 11 Visualisasi Jalur Sepeda Error! Bookmark not defined.
Gambar V. 12Visualisasi Terminal Sepeda Error! Bookmark not defined.

BAB 1

PENDAHULUAN

1.1 Latar Belakang

Transportasi adalah bagian yang sangat penting bagi kehidupan manusia. Transportasi sendiri terbagi atas dua, yaitu transportasi umum dan pribadi. Seiring perkembangan zaman, manusia semakin maju akan pemikirannya, memiliki inovasi yang baik seperti pelayanan publik yang mudah digunakan, tempat tinggal yang aman, pekerjaan yang sejahtera dan tempat layanan maasyarakat yang memadai.

Dalam pelayanannya, transportasi dapat dilakukan dengan kendaraan bermotor dan tidak bermotor. Kendaraan bermotor sudah menjadi kebutuhan wajib pada saat ini, hal ini dikarenakan kendaraan digunakan sebagai sarana transportasi masyarakat untuk mendukung mobilisasi/pergerakan kehidupan manusia. Tanpa kendaraan atau transportasi aktifitas kehidupan manusia dapat terganggu sehingga menjadi lebih lamban dan sulit berkembang.

Semakin majunya ekonomi di Indonesia mendorong jumlah aktifitas masyarakat serta bertambahnya kebutuhan akan transportasi. Di Indonesia sendiri, masyarakat lebih tertarik kepada kendaraan pribadi. Kemudian hal ini menimbulkan peningkatan terhadap jumlah kendaraan pribadi di kota/kabupaten yang ada di Indonesia. Kendaraan pribadi memberikan keuntungan bagi banyaknya masyarakat Indonesia, terutama dalam hal mobilisasi yang tinggi serta efektif dan efesien sehingga masyarakat menilai lebih flexibel dalam melakukan aktifitasnya.

Peningkatan jumlah kendaraan pribadi jika tidak di iringi pembangunan sarana yang memadai dapat menimbulkan kemacetan. Kemacetan lalulintas yang terjadi di beberapa kota besar, tidak hanya terjadi di jam-jam sibuk, namun juga pada waktu-waktu lainnya. Kemacetan tidak hanya berdampak pada peningkatan waktu perjalana atau tundaan perjalanan, namun merangkaknya biaya lingkungan akibat polusi udara maupun penggunaan

BBM. Pada tahun 2005 sektor transportasi menjadi penyumbang emisi CO2 Indonesia keatmosfer sejumlah 20,7 % dari emisi total, dibawah sektor permukiman (9%), sektor industri (37%), sektor pembangkit tenaga listrik (27%) dan lain-lain (4%). Jika dibandingkan dengan jenis transportasi yang lain, transportasi darat juga memiliki persentase yang lebih tinggi yaitu 90,7 % dibandingkan dengan transportasi air (6,9%), transportasi udara (2,4%), dan kereta api (0,1%) (Ernawi,2010).

Menurut penelitian yang dilakukan Pusat Litbang Jalan dan Jembatan dari Departemen Pekerjaan Umum tahun 2008; "Dalam kondisi negara yang masih berkembang maka strategi penyertaan masyarakat dalam melakukan pengelolaan dan pengendalian kualitas udara merupakan alternatif yang sangat penting. Bagian yang sangat kritis dalam pengembangan konsep kota berkelanjutan dan pengelolaan lingkungan adalah mengubah atau mempengaruhi kebiasaan pola konsumsi atau pola pikir masyarakat. Untuk itu perlu dikembangkan program atau strategi penyuluhan dan pendidikan yang melibatkan peran serta masyarakat, melakukan kampanye melalui mass-media mengenai keuntungan- keuntungan dalam penerapan program pengelolaan lingkungan berkelanjutan di masa yang akan datang."

Untuk mengatasi masalah tersebut Pemerintah mulai mengembangkan pembangunan kota berdasarkan prinsip kota hijau yang di tandai dengan UU No. 26 Tahun 2007 tentang Penataan Ruang bahwa semua arah penataan, pengembangan atau penyediaan infra struktur harus mementingkan kelestarian lingkungan dan keselamatan Lingkungan. Dalam upaya mewujudan Kota Hijau terdapat 8 (delapan) atribut yang harus dipenuhi yaitu: *Green Planning and Design, Green Open Space, Green Community, Green Water, Green Waste, Green Energy, Green Building, dan Green Transportation.* Salah satu atribut ialah Green Transportation merupakan konsep transportasi yang berlandaskan lingkungan,baik secara sarana maupun prasarana. Sarana dapat di artikan sebagai alat atau kendaraan yang digunakan harus ramah lingkungan(minim polusi dan hemat bahan bakar).sedangkan prasarana dapat diartikan sebagai pengembangan infrastruktur yang mengacu pada

meminimalisir dampak dari pengguna (jalur hijau serta penyediaan pejalan kaki.konsep *City Walk*). Salah satu alternatif moda transport non motorise dan non polusi adalah sepeda. Bersepeda merupakan kegiatan olahraga, kebutuhan rekreasi serta transportasi yang mendukung keselamatan lingkungan.

Kabupaten Grobogan dalam Peraturan Daerah Kabupaten Grobogan Nomor 7 Tahun 2012 tentang Rencana Tata Ruang Wilayah Tahun 2011-2031 disebutkan bahwa Rencana pengembangan sistem jaringan prasarana perlengkapan jalan berupa fasilitas untuk sepeda, pejalan kaki dan penyandang disabilitas (Pasal 19 ayat 3 huruf g).

Di Kabupaten grobogan sendiri sudah memiliki satu titik jalur sepeda yaitu pada kecamatan Purwodadi di jalan R Suprapto. Dari hasil wawancara menurut sumber 'Radar Kudus' Gowes sedang tren di kalangan masyarakat, untuk itu pihak dishub ingin menambah 2 titik jalur sepeda. Yaitu pada titik akhir jalan R Suprapto (Simpang 4 RS Yakum) menghubungkan ke Alun-alun dan sepanjang jalan Mayjen D.I Panjaitan hingga ke jalan Hayam Wuruk. Hal ini dikarena kan jalan tersebut menghubungkan alun-alun dan simpang lima. Sepanjang jalan Hayam wuruk, banyak sekali pusat kegiatan seperti tempat makan, pertokoan dan rumah sakit. Jalan Hayam wuruk juga sebagai jalan penghubung ke sekolah-sekolah di kecamatan Purwodadi. Alun-alun dan simpang lima memiliki banayak aktifitas dikarenakan di simpang 5 sendiri dapat di gunakan sebagai tempat rekreasi serta tempat olagraga, begitu pun dengan alun-alun. Kegiatan inilah yang menjadikan dasar penulis untuk saling menghubungkan aktifitas antar alun-alun serta simpang lima dengan fasilitas Jalur sepeda.

Bike Sharing System sudah banyak diterapkan dikota-kota besar di Indonesia yaitu di kota DKI Jakarta yaitu di Monas dan di Kota Bandung. Sistem berbagi sepeda mendukung orang untuk menyewa sepeda di salah satu dari banyak stasiun penyewaan otomatis yang tersebar di seluruh kota, menggunakannya untuk perjalanan singkat dan mengembalikannya di stasiun mana pun di kota.

Dikarenakan rute dari alun-alun ke simpang lima melewati banyak istansi pemerintahan meliputi pendidikan, sosial, olahraga dan instansi lainnya serta melewati wilayah permukiman, penulis akan merencanakan Pembuatan Jalur sepeda Penghubung Alun-alun dan Simpang Lima berbasis Bike Sharing System. Hal ini dikarenakan untuk memotivasi dan menarik minat masyarakat, pelajar dan pegawai yang melakukan kegiatan di daerah tersebut agar beralih dari kendaraan bermotor ke kendaraan tak bermotor yaitu sepeda. Menurut hasil wawancara, "Jalur sepeda dibutuhkan, apalagi anak sekolah banyak yang berangkat menuju sekolah menggunakan sepeda" (Fandy Murdiyanto).

1.2 IDENTIFIKASI MASALAH

Berdasarkan uraian dari latar belakang permasalahan, maka dapat di simpulkan beberapa permasalahan sebagai berikut:

- Adanya peningkatan kegiatan transportasi yang mengakibatkan buruknya kualitas udara dan dibutuhkannya sarana transportasi non BBM agar terciptanay kota hijau dan gaya hidup berwawasan lingkungan.
- 2. Kurangnya fasilitas untuk pesepeda seperti jalur sepeda, rambu-rambu pendukung dan tempat parkir sepeda yang mendukung keamanan dan keselamatan pesepeda.
- 3. Masih sedikitnya minat masyarakat yang menggunakan sepeda untuk menggantikan kendaraan bermotor, maka direncanakan Bike Sharing System agar meningkatkan minat masyarakan lainnya.
- 4. Banyaknya aktifitas olahraga di alun-alun dan simpang lima sehingga perlu dibuat Jalur sepeda yang didukung oleh jasa penyewaan sepeda agar alun-alun dan simpang lima terkoneksi dan berkurangnya kegiatan olahraga di alun-alun supaya pengunjung lain tidak terganggu karena banyaknya masyarakat yang jooging di alun-alun dan beralih dari jooging ke bersepeda.

1.3 RUMUSAN MASALAH

Berdasarkan uraian latar belakang serta identifikasi masalah tersebut, maka hal yang harus dirumuskan dalam penelitian ini adalah:

- 1. Bagaimana rencana rute jalur sepeda di Kabupaten Grobogan?
- 2. Bagaimana kondisi kinerja lalulintas sebelum dan sesudah adanya rute Jalur sepeda ?
- 3. Bagaimana rencana desain sarana dan prasarana Jalur sepeda yang menghubungkan Alun-alun dan Simpang lima ?
- 4. Bagaimanakah rancangan sistem peminjaman atau penyewaan sepeda berbasis BSS (*Bike Sharing System*) di Kabupaten Grobogan?

Berdasarkan uraian latar belakang, identifikasi masalah dan rumusan masalah sehingga judul yang diambil dalam penulisan penelitian ini adalah "PERENCANAAN JALUR SEPEDA BERBASIS BIKE SHARING SYSTEM DI KABUPATEN GROBOGAN (STUDI KASUS ALUN ALUN MENUJU SIMPANG LIMA)"

1.4 MAKSUD DAN TUJUAN

Maksud dari Penulisan Kertas Kerja Wajib ini adalah untuk Merencanakan Desain serta rute Jalur sepeda Penghubung Taman Pancasila dan Taman Bendosari dengan mempertimbangkan rute terpendek serta pemilihan rute yang menghindari jalur utama lalu lintas demi kenyamanan serta keselamatan pengguna sepeda dan mempertimbangkan kinerja lalu lintas rute tersebut.

Tujuan dari penulisan Ketas Wajin ini adalah:

- Menentukan desain sarana dan prasarana pendukung penyewaan dan Jalur sepeda.
- 2. Menentukan rute rencana jalur sepeda di kabupaten Grobogan.

- 3. Membandingkan besaran kinerja lalulintas yang melewati ruas jalan yang akan digunakan sebagai Jalur sepeda.
- Menentukan usulan pengoperasian jasa penyewaan sepeda berbasis Bike Sharing System sebagai dukungan penerapan kota hijau di kabupaten Grobogan.

1.5 BATASAN MASALAH

1.5.1 Wilayah

Penelitian hanya dilakukan di wilayah Alun-alun Kabupaten Grobogan dan Simpang Lima Kabupaten Grobogan.

1.5.2 Substansi

- 1. Hanya menentukan usulan rute Jalur sepeda yang menghubungkan Alun-alun menuju Simpang lima
- 2. Usulan Jasa penyewaan sepeda Bike Sharing System.
- 3. Hanya mengevaluasi kinerja ruas jalan dan v/c ratio sebelum dan sesudah adanya jalur sepeda.
- 4. Hanya menentukan konsep desain sarana maupun prasarana Jalur sepeda dan jasa penyewaan sepeda. Untuk pengembangan tahap selanjutnya dilakukan stakeholder yang bersangkutan.
- 5. Hanya melakukan pemeringkatan usulan rute berdasarkan indikator yang di tentukan.
- 6. Tidak menganalisa terkait biaya peminjaman sepeda.

1.6 REFERENSI PENELITIAN

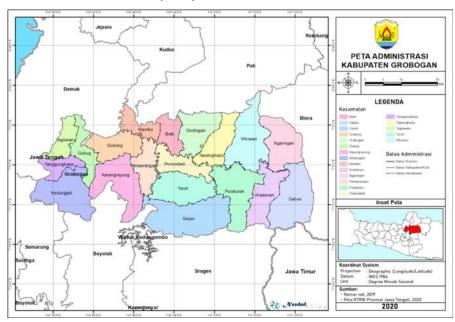
Tabel I. 1 Referensi Penelitian

NO	Judul Penelitian	In	put	Metode	Output
1	Jurnal : Universitas	•	Data Jumlah	Membandingkan 3	Usulan
	Gunadarma		Kendaraan Bermotor	konsep penerapan	penetapan
		•	Data Kondisi Jalur	jalur sepeda.	pembanggunan
	Upaya Penggunaan		Sepeda di daerah		jalur sepeda di
	Sepeda Sebagai Moda		Bandung		kota Surabaya.
	Transportasi Di Kota	•	Data Kajian		
	Surabaya.		Pemerintah Mengenai		
			Jalur Sepeda		
	Dwi Sulistyo, Bunga				
	Triana dan Neneng				
	Winarsih, 2011				
2	Jurnal: Institut	•	Data penerapan bike	Perbandingan	Evaluasi
	Teknologi Bandung		sharing system di	penerapan bike	penerapan <i>bike</i>
			Bandung.	<i>sharing system</i> di	sharing system
	SMART BIKE	•	Data penerapan bike	kota besar dunia dan	di kota
	SHARING SYSTEM		sharing di London	memetakan aspek-	Bandung.
	Sebagai Alternatif		dan Oslo.	aspek penentu	
	Moda Transportasi			keberhasilan	
	Umum Berkelanjutan			terhadap kota	
	di kota Bandung			Bandung.	
	Freddy Chrisswantra,				
	2018				

No	Judul Penelitian	In	put	Metode	Output	
3	Jurnal : Universitas	•	Data Ruas Jalan	Perbandingan 6 ruas	Rekomendasi	
	Hasanudin	•	Data wawancara	menggunakan metode	beberapa ruas	
			kepada 10	AHP (<i>Analitical</i>	jalan yang boleh	
	Analisis		stakeholder	Hierarcy Process).	disediakannya	
	Perencanaan				jalur khusus	
	Penyediaan Lajur				sepeda.	
	Khusus Sepeda Di					
	kota Tegal dengan					
	Metode <i>Analitical</i>					
	Hierarcy Process.					
	Riandy Setiawan					
	2017					
4	Jurnal : The Role of	•	Data skema	Perbandingan	Dampak dan	
	Smart Bike Sharing		distribusi <i>bike</i>	keuntungan setiap	keuntungan	
	System in Urban		<i>sharing</i> di berbagai	negara dalam	diterapkannya	
	Mobility.		dunia.	pengunaan <i>bike</i>	penyewaan	
		•	Data peta letak	<i>sharing</i> di negara	sepeda sebagai	
	Peter Midley, 2017		jalur sepeda dan	tersebut.	pendukung	
			stasiun sepeda di		mobilitas.	
			Barcelona.			

5	Jurnal : Universitas	•	Data pene	rapan	Menganal	isis		Peluang
	Diponogoro		jalur seped	a di	penerapai	n	jalur	pengembangan
			negara (China,	sepeda	di	Cina,	jalur sepeda.
	Jalur Sepeda		Jepang	dan	Jepang		dan	
	Sebagai Bagian dari		Jogjakarta.		Jogjakarta	Э.		
	Sistem Transportasi	•	Visualisasi	Jalur				
	Kota yang		sepeda di n	egara				
	Berwawasan		Cina, Jepang	g dan				
	Lingkungan.		Jogjakarta.					
	Artiningsih, 2011							
No	Judul Penelitian	I	nput		Metode			Output
6	Jurnal: Universitas	6	Data Waw	/ancara	Mengana	alisis	hasil	Tabel arahan atau
	Gajah Mada.		penggunaan		survei	wawar	ncara	usulan desain jalur
			sepeda	dan	terhadap)		sepeda
	Desain Jalur Sepeda	1	pengembang	gan	masyara	kat.		berdasarkan hasi
	di Wilayah Perkotaar	1	jalaur seped	a.				survei wawancara.
	Wonosari Kabupater	1	Data peta ex	xsisting				
	Gunungkidul Daerah	1	jalur	sepeda				
	Istimewa Yogyakarta.		masyarakat	lokal.				
	Listantri dar	1						
	Joewono, 2017							

7	Jurnal : Montana	Da	ta	depende	en •	Reg	resi	faktor-	Mengetahui	faktor
	State University	va	iabe	l		fakt	or	yang	pendukung	
		(Pe	rjala	nan sepec	da	mer	npeng	garuh	penggunaai	า
	Bike Sharing System	pe	hari) da	an	jum	lah		sepeda di	negara
	in Poland.	inc	eper	nden		perj	alana	n <i>bike</i>	Polandia.	
		va	iabe	l		sha	ring s	ystem		
	Tomasz Bielinski,	(ka	rakt	eristik kot	a,					
	Agnieszka	ka	akte	ristik						
		be	sepe	eda da	an					
		cua	ica)							
		Da	ta	informa	ısi					
		um	um	dan da	ta					
		da	sar	penggur	na					
		se	eda							
8	Jurnal : Cornell	•	Lol	kasi stasiu	n	•	Regr	esi	Waktu yang	sering
	University,		sep	oeda di			tingk	at letak	digunakan l	ketika
			Ма	nhatan da	n		stasi	un	menggunak	an
	Predicting Bike		Bro	oklyn			sped	a	sepeda	
	Usage for New York	•	Pet	ta Batas			terha	adap		
	City Bike Sharing		Lin	gkungan			peng	gunaan		
	System.		yaı	ng dapat			taksi			
			dia	kses						
			sta	siun						
			sep	oeda.					_	


No	Judul Penelitian	Input		Metode	Output
9	Kertas Kerja Wajib :	•	Inventarisasi Ruas Jalan	Prankingan	Penetapan rute
	Sekolah Tinggi	•	Volume lalulintas	terhadap usulan	dan desain jalur
	Transportasi Darat	•	Data jaringan jalan	rute jalur khusus	sepeda
				sepeda	
	Perencanaan Jalur				
	Khusus Sepeda				
	Penghubung Taman				
	Pancasila dan Taman				
	Bendosari Kota				
	Salatiga				
	Aditya Trinanda,				
	2014				
10	Kertas Kerja Wajib :	•	Volume lalu lintas	Prankingan	Penetapan rute
	Sekolah Tinggi	•	Data jaringan jalan	terhadap	dan visualisasi
		•	Inventarisasi Ruas Jalan	beberapa ruas	penyewaan
	Transportasi Darat	•	Survei wawancara	jalan dan	sepeda.
	Perencanaan Jalur		masyarakat sekitar.	mendapatkan	
	Khusus Sepeda			hasil wawancara	
	Penghubung Taman			mengenai tipe	
	Giat dan Komplek			pelayanan sewa	
	Pendopo Bersinar			sepeda yang di	
	Berbasis <i>Smart Bike</i>			minati	
	Sharing System			masyarakat	
	Hendy Wahyu				
	Yulianto 2020				

BAB II

GAMBARAN UMUM

2.1 KONDISI GEOGRAFIS

Kabupaten Grobogan secara geografis merupakan salah satu Kabupaten yang berada di provinsi Jawa Tengah. Ibu kota kabupaten Grobogan berada di Kota Purwodadi. Kabupaten Grobogan Memiliki luas wilayah sebesar 1.975,86 Km2 dan menjadi kabupaten terluas ke-2 setelah Kabupaten Cilacap. Secara geografis kabupaten Grobogan berada di sebelah timur Provinsi Jawa tengah dan keseluruhan wilayahnya adalah dataran rendah.

Sumber: 1Tim PKL Kabupaten Grobogan 2020

Gambar II. 1 Peta Admnistrasi Kabupaten Grobogan

Secara astronomis, Kabupaten Grobogan terletak antara 110°15′ - 111°25′ Bujur Timur dan 7° - 7°-30′ Lintang Selatan. Secara administratif, batas wilayah kabupaten Grobogan antara lain :

1. Barat : Semarang dan Demak

2. Utara : Kudus, Pati dan Blora

3. Timur : Blora

4. Selatan : Provinsi Jawa Timur, Sragen, Boyolali, dan Semarang

2.2 WILAYAH ADMINISTRATIF

Secara administratif Kabupaten Grobogan memiliki 19 Kecamatan yang terdiri dari 280 kelurahan/desa dan 1.451 dusun. Dengan kecamatan terbesar adalah Geyer sebesar 196,19 Km2 dan kecamatan terkecil adalah Klambu sebesar 46,56 Km2.

Tabel II. 1 Luas Wilayah Per Kecamatan

				Luas
No	Kecamatan	Kelurahan/Desa	Dusun	Wilayah
				(Km²)
1	Kedungjati	12	76	130,34
2	Karangrayung	19	100	140,59
3	Penawangan	20	71	74,18
4	Toroh	16	118	119,31
5	Geyer	13	102	196,19
6	Pulokulon	13	112	133,65
7	Kradenan	14	79	107,74
8	Gabus	14	87	165,37
9	Ngaringan	12	78	116,72
10	Wirosari	14	86	154,30
11	Tawangharjo	10	58	83,60
12	Grobogan	12	52	104,56
13	Purwodadi	17	104	77,65
14	Brati	9	51	54,9

15	Klambu	9	44	46,56
16	Godong	28	86	86,79
17	Gubug	21	62	71,11
18	Tegowanu	18	54	51,67
19	Tangguharjo	9	31	60,63
	Jumlah	280	1451	1975,86

2.3 KONDISI DEMOGRAFI

2.3.1 Jumlah Penduduk

Berdasarkan hasil prakiraan jumlah penduduk, jumlah penduduk Kabupaten Grobogen tahun 2019 adalah 1.351.429 jiwa dengan laju pertumbuhan penduduk 0,56%. Dari hasil prediksi didapatkan bahwa sex ratio penduduk di Kabupaten Grobogen masih dibawah 100 atau 97,89. Hal ini menunjukkan bahwa penduduk perempuan lebih banyak daripada penduduk laki-laki. Data penduduk kabupaten Grobogan dapat dilihat pada tabel di bawah ini.

Tabel II. 2 Jumlah Penduduk

No		Kecamatan	Jumlah	
	Kode	Nama	Kecamatan	%
1	33.15.01	KEDUNGJATI	44.913	3,03%
2	33.15.02	KARANGRAYUNG	102.421	6,9%
3	33.15.03	PENAWANGAN	66.236	4,47%
4	33.15.04	TOROH	119.168	8,03%
5	33.15.05	GEYER	67.969	4,58%
6	33.15.06	PULOKULON	111.585	7,52%
7	33.15.07	KRADENAN	84.159	5,67%
8	33.15.08	GABUS	75.205	5,07%
9	33.15.09	NGARINGAN	70.975	4,78%

10	33.15.10	WIROSARI	94.671	6,38%
11	33.15.11	TAWANGHARJO	59.690	4,02%
12	33.15.12	GROBOGAN	79.165	5,34%
13	33.15.13	PURWODADI	141.405	9,53%
14	33.15.14	BRATI	51.478	3,47%
15	33.15.15	KLAMBU	39.111	2,64%
16	33.15.16	GODONG	88.696	5,98%
17	33.15.17	GUBUG	85.718	5,78%
18	33.15.18	TEGOWANU	58.123	3,92%
19	33.15.19	TANGGUNGHARJO	42.698	2,88%
		Jumlah	1.483.386	

Tabel II. 3 Jumlah Penduduk berdasarkan sex ratio

Kecamatan		Jenis Kelamin				
recamatan	Laki-laki	Perempuan	Jumlah	Sex Ratio		
(1)	(2)	(3)	(4)	(5)		
01. Kedungjati	19 634	20 187	39 821	105,57		
02. Karangrayung	44 843	44 857	89 700	104,34		
03. Penawangan	29 197	29 587	58 784	103,46		
04. Toroh	52 714	54 059	106 773	104,75		
05. Geyer	29 122	31 072	60 194	103,77		
06. Pulokulon	49 868	50 819	100 687	98,72		
07. Kradenan	37 162	38 460	75 622	95,59		
08. Gabus	33 168	34 698	67 866	96,77		
09. Ngaringan	33 313	32 934	66 247	95,15		

10. Wirosari	42 470	43 337	85 807	93,87
11. Tawangharjo	27 248	27 259	54 507	97,03
12. Grobogan	37 113	37 493	74 606	100,82
13. Purwodadi	65 990	68 364	134 354	95,84
14. Brati	22 681	23 506	46 187	82,73
15. Klambu	17 295	17 348	34 643	78,35
16. Godong	39 386	39 385	78 771	67,01
17. Gubug	37 936	38 769	76 705	105,57
18. Tegowanu	26 419	26 852	53 271	104,34
19. Tanggungharjo	19 294	20 121	39 415	103,46
Jumlah	664 853	679 107	1 343 960	97,90
2013	661 109	675 195	1 336 304	97,91
2012	657 077	671 120	1 328 197	97,91
2011	652 897	666 878	1 319 775	97,90

2.3.2 Pertumbuhan Penduduk

Sejalan dengan kenaikan jumlah penduduk maka kepadatan penduduk dalam kurun waktu lima tahun terakhir (2013–2017) cenderung mengalami kenaikan, pada tahun 2015 tercatat sebesar 668 jiwa/km2, sedangkan pada tahun 2019 menjadi 684 jiwa/km2. Jumlah penduduk yang terus bertambah setiap tahun tidak diimbangi dengan pemerataan penyebaran penduduk di tiap kecamatan. Kepadatan penduduk di kecamatan yang wilayahnya sebagian besar perkotaan mempunyai kepadatan penduduk yang tinggi dibandingkan dengan kecamatan yang wilayahnya masih merupakan daerah pedesaan. Wilayah terpadat tercatat di Kecamatan Purwodadi sebanyak 1.748 jiwa/km2 dan terjarang penduduknya adalah Kecamatan Kedungjati yaitu 306 jiwa/km2.

Tabel II. 4 Jumlah Pertumbuhan Penduduk Pria

Kecamatan	2013	2014	2015	2016	2017
Kedungjati	19 626	19 634	19 639	19 635	19 628
Karangrayung	44 606	44 843	45 075	45 286	45 493
Penawangan	29 047	29 197	29 342	29 474	29 602
Toroh	52 459	52 714	52 960	53 184	53 401
Geyer	29 138	29 122	29 100	29 066	29 027
Pulokulon	49 645	49 868	50 084	50 277	50 464
Kradenan	37 002	37 162	37 318	37 456	37 590
Gabus	33 156	33 168	33 173	33 165	33 150
Ngaringan	33 074	33 313	33 546	33 767	33 984
Wirosari	42 201	42 470	42 732	42 977	43 217
Tawangharjo	27 061	27 248	27 431	27 602	27 772
Grobogan	36 732	37 113	37 492	37 858	38 222
Purwodadi	65 326	65 990	66 649	67 283	67 916
Brati	22 530	22 681	22 829	22 968	23 104
Klambu	17 226	17 295	17 362	17 420	17 477
Godong	39 200	39 386	39 566	39 729	39 887
Gubug	37 750	37 936	38 116	38 279	38 437
Tegowanu	26 128	26 419	26 709	26 990	27 269
Tanggungharjo	19 202	19 294	19 384	19 465	19 544
Ju	661 109	664 853	668 507	671 881	675
mlah					184

Tabel II. 5 Jumlah Pertumbuhan Penduduk Wanita

Kecamatan	2013	2014	2015	2016	2017
(1)	(2)	(3)	(4)	(5)	(6)
Kedungjati	20 175	20 187	20 195	20 195	20 192
Karangrayung	44 612	44 857	45 095	45 318	45 533

Penawangan	29 432	29 587	29 739	29 880	30 017
	F2 700	F4.0F0	F4 220	F4 F62	F4 707
Toroh	53 790	54 059	54 320	54 563	54 797
Geyer	31 084	31 072	31 054	31 024	30 989
Pulokulon	50 584	50 819	51 046	51 256	51 457
Kradenan	38 287	38 460	38 626	38 779	38 925
Gabus	34 681	34 698	34 710	34 707	34 700
Ngaringan	32 694	32 934	33 171	33 397	33 619
Wirosari	43 056	43 337	43 611	43 872	44 126
Tawangharjo	27 070	27 259	27 447	27 625	27 799
Grobogan	37 102	37 493	37 882	38 261	38 636
Purwodadi	67 664	68 364	69 049	69 726	70 394
Brati	23 346	23 506	23 663	23 813	23 959
Klambu	17 276	17 348	17 417	17 480	17 540
Godong	39 193	39 385	39 571	39 744	39 910
Gubug	38 575	38 769	38 958	39 134	39 304
Tegowanu	26 552	26 852	27 151	27 442	27 733
Tanggungharjo	20 022	20 121	20 217	20 307	20 393
Jui	mlah	679 107	682 922	686 523	690 023

2.3.3 Kepadatan Penduduk

Sejalan dengan kenaikan jumlah penduduk maka kepadatan penduduk dalam kurun waktu lima tahun terakhir (2013–2017) cenderung mengalami kenaikan, pada tahun 2015 tercatat sebesar 668 jiwa/km², sedangkan pada tahun 2019 menjadi 684 jiwa/km². Jumlah penduduk yang terus bertambah setiap tahun tidak diimbangi dengan pemerataan penyebaran penduduk di tiap kecamatan. Kepadatan penduduk di kecamatan yang wilayahnya sebagian besar perkotaan mempunyai kepadatan penduduk yang tinggi dibandingkan dengan kecamatan yang wilayahnya masih merupakan daerah pedesaan.

Wilayah terpadat tercatat di Kecamatan Purwodadi sebanyak 1.748 jiwa/km² dan terjarang penduduknya adalah Kecamatan Kedungjati yaitu 306 jiwa/km²

Tabel II. 6 Tingkat Kepadatan Penduduk

	Luas Daerah	Jumlah Penduduk	Kepadatan	
Kecamatan			Penduduk	
	(Km²)	(Jiwa)	(Jiwa/Km²)	
Kedungjati	130,33	39 834	306	
Karangrayung	140,59	90 170	641	
Penawangan	74,18	59 081	796	
Toroh	119,31	107 280	899	
Geyer	196,19	60 154	307	
Pulokulon	133,65	101 130	757	
Kradenan	107,74	75 944	705	
Gabus	165,38	67 883	410	
Ngaringan	116,72	66 717	572	
Wirosari	154,3	86 343	560	
Tawangharjo	83,6	54 878	656	
Grobogan	104,56	75 374	721	
Purwodadi	77,65	135 698	1 747	
Brati	54,9	46 492	847	
Klambu	46,56	34 779	747	
Godong	86,78	79 137	912	
Gubug	71,11	77 074	1 084	
Tegowanu	51,67	53 860	1 042	
Tanggungharjo	60,64	39 601	653	

Sumber: Badan Pusat Statistik Kabupaten Grobogan

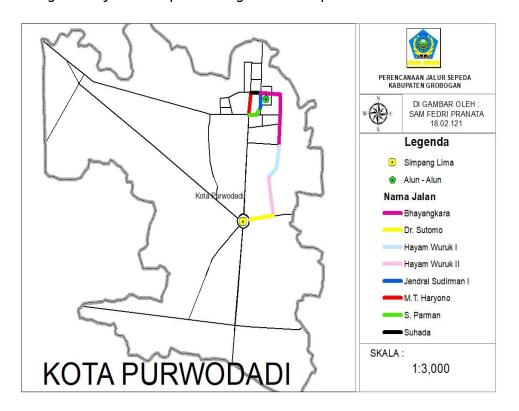
2.4 KONDISI TRANSPORTASI

2.4.1 Jaringan Jalan

Jaringan jalan adalah satu kesatuan jaringan jalan yang terdiri atas sistem jaringan jalan primer dan jaringan jalan sekunder yang terjalin dalam hubungan hierarkis. Pola jaringan jalan yang terdapat di Kabupaten Grobogan adalah linier yang terdiri dari 36 jalan kolektor

dan 29 jalan lokal yang terdapat di seluruh wilayah Kabupaten Grobogan.

Tabel II. 7 Kondisi Ruas Jalan


Kecamatan		Kondisi Jalan			
	Baik	Sedang	Rusak	Rusak Berat	Jumlah
(1)	(2)	(3)	(4)	(5)	(6)
01. Kedungjati	7.574	2.490	8.212	21.424	39.700
02. Karangrayung	13.831	11.968	10.401	0,800	37.000
03. Penawangan	28.338	7.715	15.226	10.732	62.010
04. Toroh	21.004	6.610	23.864	51.472	102.950
05. Geyer	11.169	3.090	4.500	56.841	75.600
06. Pulokulon	11.392	14.110	38.995	18.253	82.750
07. Kradenan	9.711	3.189	6.450	7.250	26.600
08. Gabus	13.675	3.248	17.246	20.431	54.600
09. Ngaringan	6.208	5.750	13.230	16.812	42.000
10. Wirosari	11.205	4.000	11.580	18.335	45.120
11. Tawangharjo	12.214	3.102	8.516	6.618	30.450
12. Grobogan	17.484	6.427	18.439	1.550	43.900
13. Purwodadi	42.481	6.025	24.542	17.132	90.180
14. Brati	8.818	1.500	16.332	0	26.650
15. Klambu	12.495	0,350	5.955	0	18.800
16. Godong	28.157	2.794	4.775	5.174	40.900
17. Gubug	11.556	7.781	673	9.990	30.000
18. Tegowanu	8.770	4.975	1.874	15.081	30.700
19. Tanggungharjo	5.509	0	569	4.022	10.100
Jumlah	281.590	95.124	231.379	281.917	890.010
2012	269.897	69.816	220.585	329.712	890.010
2011	241.328	78.388	230.400	332.984	883.100
2010	280.944	292.003	179.885	130.269	883.100

Sumber: 2BPS Kabupaten Grobogan

Diatas merupakan tabel kondisi ruas jalan perkecamatan. Setiap tahunnya kondisi ruasjalan yang ada di Kabupaten Grobogan selalu meningkat. Hal ini mengindikasikan bahwa ada faktor tertentu yang menyebabkan peningkatan kerusakan.

2.5 KONDISI WILAYAH STUDI

Wilayah yang dikaji adalah Kabupaten Grobogan yang bertepat di beberapa ruas yang menghubungkan Alun-Alun kota dengan Simpang Lima. Bersepeda di Kabupaten Grobogan pada umumnya menjadi kegiatan hobi maupun olahraga semata, namun sebagian atau sedikit dari pelajar di Kabupaten Grobogan menjadikan sepeda sebagai alat transportasi utama.

Gambar II.1 Peta Wilayah Studi

Namun kegiatan bersepeda di Kabupaten Grobogan akan banyak di jumpai pada akhir pekan maupun hari libur. Pada setiap pekannya, diKabupaten Grobogan selalu melaksanakan kegiatan GOWES atau bersepeda bersama guna meningkatkan dan mebiasakan pola sehat dengan bersepeda.

Dikabupaten Grobogan sendiri terdapat beberapa komunitas pesepeda yaitu Purwodadi Bike Comunity, KOSTI, Onthelis dan lainnya.

Daya tarik masyarakat umumnya berkumpul pada simpang lima dan alun-

Gambar II.2 Komunitas Sepeda Kabupaten Grobogan

alun yang merupakan pusat tempat masyarakat untuk berkegiatan, berekreasi serta berolahraga.

Alun-alun merupakan tempat yang berada ditengah tengah wilayah pusat pemerintahan Kabupaten Grobogan. Selain sebagai tempat rekreasi, alun-alun juga menjadi tempat berolahraga.

Aktifitas bersepeda di Kabupaten Grobogan dapat dilakukan di segala usia baik muda maupun tua yang dapat dilakukan secara individu maupun kelompok. Kegiatan bersepeda sudah didukung oleh Pemerintah Kabupaten Grobogan hal ini ditandai dengan adanya fasilitas-fasilitas khusus pesepeda dan Pemerintah Kabupaten Grobogan juga menggandeng KOSTI dan Onthelis dalam rangka hari bersih-bersih dunia.

Dalam hal sarana dan prasarana guna menunjang keselamatan dan kenyamanan bersepeda, Kabupaten Grobogan hanya memiliki satu titik Jalur sepeda yang terletak di jalan R.Suprapto. Fasilitas yang tersedia hanya Jalur sepeda serta rambu pendukung dan belum adanya fasilitas parkir sepeda. Kondisi Jalur sepeda sendiri memiliki cat yang sudah pudar dan tidak jelas pada beberapa titik.

Gambar II.3 Kondisi Jalur Sepeda

Banyak masyarakat Kabupaten Grobogan yang antusias terhadap bersepeda namun beberapa dari masyarakat saja yang memiliki sepeda. Sehingga berdampak juga terhadap pembangunan rute Jalur sepeda. Adanya jasa penyewaan sepeda sangat diperlukan dikarenakan dapat berpengaruh terhadap minat masyarakat serta agar Jalur sepeda dapat digunakan sebagaimana mestinya.

Untuk alun-alun menuju simpang lima dapat di akses dengan beberapa ruas yaitu :

Tabel II. 8 Inventarisasi Ruas Yang Dapat Diakses

Nama Ruas	Panjang	Lebar	Kondisi	Trotoar
Jalan			Jalan	
JL.Bayangkara	1280	9	Baik	Ada (kanan dan kiri)
Jl.Dr. Sutomo	430	9	Baik	Ada (kanan)
Jl.Hayam	600	9	Baik	Tidak ada
Wuruk 1				
Jl.Hayam	520	10	Baik	Tidak ada
Wuruk 2				
JL S Parman	200	12	Baik	Ada (kanan,kiri)
Jl.Sudirman	180	12	Baik	Ada (kanan,kiri)
Jl.Suhada	150	11	Baik	Ada (kanan,kiri)

Sumber: Analisis

BAB III

KAJIAN PUSTAKA

3.1 Manajemen Rekayasa Lalulintas

Perencanaan Jalur sepeda dan jasa penyewaan sepeda berpengaruh pada perencanaan Manajemen Rekayasa lalu Lintas (MRLL) yang tercantum pada Peraturan Pemerintah Nomor 96 Tahun 2015. Manajemen dan rekayasa lalu lintas adalah usaha dan kegiatan yang meliputi pengadaan, perencanaan, pemasangan, pemeliharaan dan pengaturan fasilitas perlengkapan jalan dalam rangka mewujudkan, mendukung dan memelihara keamanan, keselamatan, ketertiban dan kelancaran lalu lintas. Manajemen dan rekayasa lalu lintas meliputi kegiatan perencanaan, pengaturan, perekayasaan, pemberdayaan dan pengawasan. Salah satu strategi untuk mengatur manajemen rekayasa lalu lintas di perkotaan adalah dengan pemisahan atau pemilahan pergerakan arus lalulintas demi kenyamanan dan keamanan para pengendara atau pengguna jalan baik pengendara kendaraan bermotor mauput kendaraan tak bermotor. Terdapat dua tipe strategi yaitu transport suplly management (TSM) dan transport demand management (TDM). TDM yaitu suatu pola atau langkah pemecahan permaasalahan transportasi dengan pendekatan melalui sisi permintaan angkutan umum atau upaya pengurangan jumlah penggunaan kendaraan pribadi. TDM dapat dilakukan dengan cara sebuah kebijakan atau memfasilitasi masyarakat dengan angkutan umum. Sedangkan TSM adalah suatu pemecahan suatu permasalahan transportasi dengan pembangunan infra struktur atau penyediaan prasarana sebanyak banyaknya. TSM sangat menguntungkan apabila sudah tercapai dan digunakan di Indonesia dikaarenakan akan mngurangi pencemaran lingkungan. Salah satu gerakan untuk mewujudkan itu salah satunya yaitu pembangunan jalur sepeda. Pada Jalur sepeda perlu diperhatikan mengenai beberapa tingkat pelayanan sesudah dan sebelum adanya Jalur sepeda yaitu V/C Rasio, Kecepatan, Kepadatan, Tundaan, Antrian, Keamanan, Keselamatan, Ketertiban dan Kelancaran.

3.2 Jalur Sepeda

Undang-Undang Nomor 22 Tahun 2009 tentang Lalu Lintas dan Angkutan Jalan (LLAJ) menyatakan bahwa lalu lintas dan angkutan jalan adalah satu kesatuan sistem yang terdiri atas lalu lintas, angkutan jalan, lalu lintas dan angkutan jalan, prasarana lalu lintas dan angkutan jalan, kendaraan, pengemudi, pengguna jalan, serta pengelolaannya. Dalam UU 22 Tahun 2009 kendaraan tidak bermotor adalah segala kendaraan yang digerakkan oleh tenaga manusia dan atau hewan. Pada Pasal (45) dalam UU 22 Tahun 2009 menegaskan bahwa fasilitas pendukung penyelenggaraan LLAJ meliputi trotoar, halte, tempat penyeberangan pejalan kaki, dan atau fasilitas khusus penyandang disabilitas dan manusia usia lanjut.

Menurut UU 22 Tahun 2009 Pasal (62) menyatakan bahwa Pemerintah, termasuk Pemerintah Daerah, wajib memberikan kemudahan berlalu lintas bagi pesepeda. Selain itu, para pesepeda juga berhak atas fasilitas pendukung keselamatan, keamanan dan olahraga dalam berlalu lintas. Dalam alasan tersebut, sesuai dengan kewenangan Pemerintah Daerah, UU 22 Tahun 2009 Pasal (63) dinyatakan bahwa Pemerintah Daerah dapat menentukan jenis dan penggunaan kendaraan bermotor di daerahnya sesuai dengan karakteristik dan kebutuhan daerah. Dalam konteks ini, pengembangan jalur sepeda di wilayah Kabupaten Grobogan merupakan bentuk tanggung jawab Pemerintah Kabupaten Grobogan dalam hal penyediaan fasilitas transportasi kendaraan tidak bermotor bagi masyarakat.

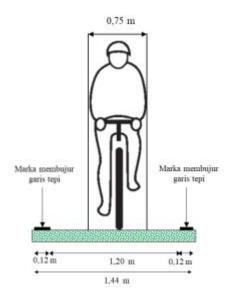
III.2.1 Tipe Fasilitas Jalur Sepeda

Dalam menentukan Jalur sepeda, maka dibutuhkan karakteristik ruang khusus sepeda guna memudahkan dalam bersepeda. Ruang Jalur sepeda termasuk didalam bagian Ruang Lalu Lintas. Ruang Lalu Lintas adalah prasarana yang digunakan untuk gerak pindah kendaraan, orang, dan/atau barang yang berupa Jalan dan fasilitas pendukung. Sesuai Peraturan Pemerintah Nomor 79 Tahun 2013

Pasal (17) menjelaskan bahwa dalam menentukan Jalur sepeda perlu diperhatikan kelas jalan yang dipakai yaitu :

- 1. Jalan kelas I meliputi jalan arteri dan kolektor.
- 2. Jalan kelas II meliputi jalan arteri, kolektor, lokal, dan lingkungan.
- 3. Jalan kelas III meliputi jalan arteri, kolektor, lokal, dan lingkungan.
- 4. Jalan kelas khusus diatur dalam peraturan pemerintah tersendiri. Penetapan tipe fasilitas transportasi sepeda, terdiri atas :
 - a. Bike Path, adalah lajur sepeda yang sepenuhnya terpisah dari lalu lintas kendaraan bermotor, baik dengan ruang tertentu diluar badan jalan atau terpisah dengan pemisah fisik dengan lajur lalu lintas kendaraan bermotor.
 - b. Bike Line, adalah lajur yang ditandai dengan marka pada badan jalan untuk pengguna pengendara sepeda.
 - c. Penggunaan Bersama, segmen jalan yang di desain untuk penggunaan Bersama antara sepeda dengan lalu lintas kendaraan bermotor (shared roadway) dan atau sepeda dengan pejalan kaki (share pedestrian path) yang disertai teknik-teknik pengendalian lalu lintas yaitu dengan mengurangi kecepatan lalu lintas bermotor, baik dengan pembatasan kecepatan maupun perubahan fisik jalan.

III.2.2 Spesifikasi Jalur sepeda


1. Dimensi Jalur Sepeda

Demi keamanan, kenyamanan dan ruang bebas gerak serta kelancaran berlalulintas, Jalur sepeda memiliki ketentuan dalam perencanaannya. Hal ini di atur pada ketentuan perencanaan tata ruang wilayah kabupaten yang terdapat pada Undang-undang RI No. 26 Tahun 2007 Tentang Tata Ruang Pasal (28) dan pasal (29) yang isinya sebagai berikut:

- a. Rencana penyediaan dan pemanfaatan ruang terbuka hijau.
- Rencana penyediaan dan pemanfaatan ruang terbuka non hijau, dan
- c. Rencana penyediaan dan pemanfaatan prasarana dan sarana jaringan pejalan kaki, angkutan umum, kegiatan sektor informal dan ruang evakuasi bencana yang dibutuhkan untuk menjalankan fungsi wilayah kota sebagai pusat pelayanan sosial ekonomi dan pusat pertumbuhan wilayah.
- d. Ruang terbuka hijau terdiri dari ruang terbuka hijau publik dan ruang terbuka hijau privat.
- e. Proporsi ruang terbuka hijau pada wilayah kota paling sedikit 30% dari luas wilayah kota.
- f. Proporsi ruang terbuka hijau publik pada wilayah kota paling sedikit 20% dari luas wilayah kota.

Berikut adalah ketenduan dalam menentukan dimensi Jalur sepeda berdasarkan PM 59 Tahun 2020 :

- 1. Lebar Minimum 120 cm, direkomendasikan 150 cm untuk satu arah.
- 2. Lebar minimum 200 cm, direkomendasikan 300 cm untuk dua arah.
- 3. Ruang bebas tinggi minimum 225 cm,direkomendasikan 250 cm.
- 4. Kemiringan jalur sepeda maksimal 7 %, direkomendasikan 5 %.
- 5. Jalur sepeda di letakan pada tepi luar jalur lalu lintas bermotor dan searah dengan lalulintas bermotor.

Gambar III. 1 Lebar Minimum Jalur Sepeda

III.2.3 Jalur Sepeda Sebagai Pendukung Keselamatan

Dalam upaya meningkatkan keselamatan lalulintas pada ruas jalan yang didesain sebagai jalur sepeda, perlu adanya pemenuhan persyaratan laik fungsi jalan & fasilitas pendukung keselamatan, kenyamanan dan keamanan berlalu lintas. Berdasarkan Peraturan Pemerintah Nomor 37 Tahun 2017 Tentang Keselamatan Lalu Lintas & Angkutan Jalan Pasal (14), Pemenuhan persyaratan laik fungsi jalan dapat dilakukan dengan cara:

- 1. melaksanakan pembangunan jalan sinkron menggunakan persyaratan keselamatan.
- 2. melaksanakan manajemen & rekayasa kemudian lintas pada jalan.
- 3. melakukan uji laik fungsi jalan.
- 4. melaksanakan pemantauan & evaluasi syarat jalan.
- 5. melakukan pemeriksaan jalan.
- 6. melakukan audit jalan.

Dalam Pasal (48) serta (49) perlu dilakukan suatu Inspeksi Keselamatan Lalu Lintas & Angkutan Jalan salah satunya melakukan pemeriksaan terhadap perlengkapan jalan & fasilitas pendukung buat jalan yang telah dioperasikan guna meninjau perkembangan menurut Jalur sepeda yang telah dibentuk.

III.2.4 Perlengkapan Fasilitas Jalur Sepeda

Menurut Undang Undang No. 22 Tahun 2009 Pasal 62 ayat (2) "Pesepeda berhak atas fasilitas pendukung keamanan, keselamatan, ketertiban dan kelancaran dalam berlalulintas. Untuk memenuhi hal tersebut demi keamanan, kenyamanan dan kelancaran berlalulintas, pemerintah wajib memberikan fasilitas bagi pesepeda berupa Jalur sepeda dan perlengkapan penunjang lainnya meliputi:

1. Rambu dan Marka

Menurut PM 34 Tahun 2014 pasal 1 marka adalah suatu tanda yang berada di permukaan jalan atau di atas permukaan jalan yang meliputi peralatan atau tanda yang membentuk garis membujur, garis melintang, serta lambang yang berfungsi untuk mengarahkan arus lalu lintas dan membatasi daerah kepentingan lalu lintas.

Pemasangan marka dilakukan dengan prinsip:

- a. Marka garis warna putih, dengan pengaturan jenis garis sesuai dengan kebutuhan jalur sepeda.
- Marka garis warna hijau dapat digunakan untuk memprioritaskan lebih pada pengguna jalan atau daerah kepentingan khusus.
- Pada area konflik, marka lambang dan marka warna harus digunakan untuk meningkatkan visibilitas pengguna jalan.
 Area konflik tersebut yaitu :
 - 1) Lengan pendekat simpang.
 - 2) Pengoprasian lajur sepeda 2 arah dan berlawanan arah arus lalu lintas.
 - 3) Area parkir di badan jalan.

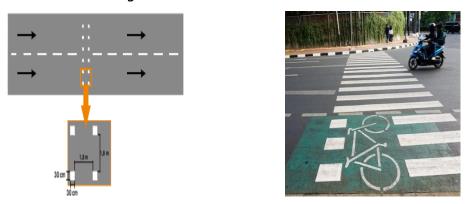
4) Akses Masuk dan Keluar.

Dalam perencanaan dan pengembangan Jalur sepeda di kabupaten Grobogan, penggunaan marka sebagian besar mengacu kepada PM 34 Tahun 2014. Dalam upaya memenuhi kenyamanan berlalulintas, berikut adalah beberapa marka yang d terapkan:

a) Marka Lambang

Marka lambang sebagai mana yang dimaksud pada PM 34 Tahun 2014 berupa:

- Panah
- Gambar
- Segitiga
- Tulisan

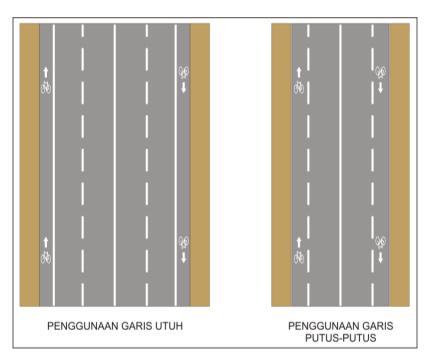

Gambar III. 2 Contoh Marka Lambang

Diatas merupakan beberapa contoh dari marka lambang. Marka lambang idealnya diberikan warna putih agar membedakan dengan warna jalur tersebut. Marka ini bertujuan untuk meningkatkan penglihatan pengendara agar dengan jelas dan tegaas bahwa jalur itu merupakan hak pesepeda. Marka lambang di atas juga menunjukan ke arah

mana pesepeda harus melaju atau berjalan. Marka lambang biasanya di tempatkan di sebelum persimpangan atau setia 50 – 100 meter tergantung ruang yang dimiliki.

b) Marka Melintang

Menurut PM 34 Tahun 2014 Pasal 1 ayat (3) Marka melintang adalah marka jalan yang tegak lurus terhadap sumbu jalan. Warna marka ini adalah putih hal itu di jelaskan pada PM 34 Tahun 2014 Pasal 23 Ayat (2). Berikut adalah beberapa contoh marka Melintang:



Gambar III. 3 Contoh Marka Melintang

Marka melintang merupakan marka yang menyatakan batas berhenti kendaraan yang diwajibkan berhenti oleh alat pembeli isyarat lalu lintas (APILL), rambu berhenti, atau *zebracross*. Marka melintang dapat berupa garis utuh maupun putus-putus. Marka melintang putus-putus berfungsi untuk menyatakan batas yang tidak dapat di lampaui kendaraan sewaktu memberi kesempatan kepada kendaraan yang mendapati hak utama.

c) Marka Membujur

Marka membujur adalah marka yang sejajar dengan sumbu jalan. Marka membujur dapat berupa garis putus-putus atau pun garis utuh. Fungsi dari marka ini yaitu sebagai larangan bagi kendaraan melintasi garis tersebut dan pembatas serta pembagi jalur.

Gambar III. 4 Contoh Marka Membujur

Warna garis membujur pada umumnya berwarna putih dan memantulkan cahaya lebar garis membujur paling minimal adalah 10 cm dan panjang nya adalah 3 meter.

Menurut Peraturan Mentri No. 13 Tahun 2014 rambu lalu lintas adalah bagian perlengkapan jalan yang berupa lambang, huruf, angka, kalimat dan/atau perpaduan yang berfungsi sebagai peringatan, larangan, perintah atau petunjuk bagi pengguna jalan.

Berdasarkan Peraturan Mentri No. 13 Tahun 2014 Pasal Tiga (3) Ayat Satu (1) rambu lalu lintas berdasarkan jenisnya ada 4 yaitu rambu perintah, rambu peringatan, rambu petunjuk dan rambu larangan. Berikut adalah beberapa contoh rambu yang digunakan sebagai penunjang Jalur sepeda:

a. Rambu Perintah

Rambu perintah adalah rambu yang ditunjukan untuk memberikan perintah. Rambu ini berwarna biru dan dipadukan dengan gambar atau tulisan.

Menandai awal jalur sepeda, pengguna sepeda wajib menggunakan jalur yang ada

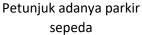
Menandai jalaur sepeda yang berbagi dengan jalur kendaraan bermotor

Sepeda wajib mengikuti arah yang belok

Setiap sepeda yang melintas wajib mengikuti salah satu arah yang di tunjuk.

Setiap sepeda yang melintas wajib mengikuti arah yang di tunjuk.

Lajur atau bagian jalan yang wajib dilewati sepeda.


Gambar III. 5 Rambu Perintah

b. Rambu Petunjuk

Rambu petunjuk yang menyatakan tempat fasilitas umum, batas wilayah suatu daerah, situasi jalan dan rambu berupa kata-kata serta tempat khusus dinyatakan dengan warna dasar biru. Untuk rambu petunjuk arah untuk mencapai suatu tujuan dinyatakan dengan warna dasar hijau dengan lambang.

Menandai keberadaan jalur sepeda pada jalan lain sesuai arah panah

Rambu untuk jalur sepeda
yang berlawanan arah (contra
flow). Garistengah
menunjukkan adanya pemisah
(fisik maupun marka)

Gambar III. 6 Rambu Petunjuk

c. Rambu Peringatan

Rambu peringatan yaitu rambu yang digunakan untuk memberi peringatan kemungkinan ada bahaya atau tempat berbahaya didepan pengguna jalan. Warna dasar rambu peringatan adalah kuning dengan tulisan atau lambang berwarna hitam.

Rambu peringatan dikarenakan ada tempat penyebrangan sepeda diruas

Rambu peringatan dikarenakan ada tempat penyebrangan sepeda dan pejalan kaki.

Rambu peringatan dikarenakan terdapat tancakan yang curam.

Rambu peringatan bahwa akan ada jalan dengan kelandaian menurun.

Rambu peringatan untuk berhati hati dikarenakan banyak pesepeda.

Gambar III. 7 Rambu Peringatan

d. Rambu Larangan

Warna dasar rambu larangan adalah putih dan lambang atau tulisan berwarna hitam.

Larangan menjalankan kendaraan debfan kecepatan lebih dari 40 Km/jam.

Larangan bagi sepeda motor, mobil dan mobil barang untuk masuk suatu ruas

Larangan wajib berhenti sementara dan atau melanjutkan perjalanan setelah dipastikan selamat dari konflik lalulintas dari arah lainnya.

Gambar III. 8 Rambu Larangan

2. Parkir Sepeda

Dalam upaya meningkatkan keamanan dan kenyamanan sepeda, pengguna sepeda dapat disediakan fasilitas parkir sepeda. Peletakan parkir sepeda yang terdapat pada PM 59 Tahun 2020 yang menegaskan bahwa lokasi penempatan parkir sepeda harus diletakan pada lokasi yang mudah diakses, aman dan tidak mengganggu pejalan kaki. Berikut adalah kriteria parkir sepda menurut PM 59 Tahun 2020 :

- 1. Mudah dilihat dan ditemukan.
- 2. Mudah di akses dan dekat dengan fasilitas lain.
- 3. Mudah dalam penggunaanya.
- 4. Memiliki kapasitas yang memadai.
- 5. Terlindung dari cuaca.
- 6. Tidah mengganggu arus lalu lintas.

3.3 Teknis Penyewaan Sepeda (Bike Sharing System)

Guna meningkatkan minat masyarakat akan bersepeda dan mendukung kebutuhan penggunaan sepeda, perlunya dibuat fasilitas khusus yaitu peminjaman sepeda (bike sharing system). Metode ini sudah diterapkan di beberapa kota salah satunya yaitu Kota Bandung. Menurut Penelitian Sony Sulaksono yang berjudul Development od bike sharing station by appliying smart card tecnology sistem peminjaman sepeda berbasis smart card memperlihatkan sebuah sistem berbasis IT dengan pengincian sepeda otomatis yang terdiri dari dua bagian besar yaitu terminal/stasiun sepeda sebagai otak atau pusat dan media transaksi pengguna dan sebuah docking yang berfungsi sebagai media penguncian sepeda. Dibawah ini adalah gambar prototype yang dipamerkan pada Asia - Afrika pada acara the summit di kota Bandung.

Gambar III. 9 Prototype Bike Sharing di Kota Bandung

Pada sistem ini, sepeda nantinya akan di fasilitasi dengan GPS (Global Positioning System) yang berfungsi sebagai pendeteksi atau pelacak keberadaan sepeda sehingga bisa di lakukan pengawasan jarak jauh. GPS juga nantinya bisa terkoneksi ke Smart Lock yang berada pada roda belakang sepeda. Hal ini dilakukan sebagai antisipasi dari tindak pencurian. Smart lock juga akan aktif jika sepeda melewati atau keluar dari area yang sudah ditentukan hal ini dikarenakan dukungan dari RFOD (Radio Frequency Identification).

Dengan menerapkan sistem ini, maka konsep yang akan berlaku adalah 3R *(Ride, Return, Repeat)* yang memiliki arti menywa sepeda dari asal perjalanan kemudian melakukan perjalanan sampai tujuan.

3.4 Teknis Analisa Penentuan Jalur sepeda

1. Penentuan Sample

Dalam penentuan sampel, rumus yang di gunakan adalah Rumus Slovin untuk menentukan minat masyarakat terhadap bersepeda yang dapat menentukan usulan rute Jalur sepeda dan jasa penyewaan.

$$n = \frac{N}{1 + N.e^2}$$

Keterangan:

N = Jumlah Total Populasi

E = Batas Toleransi Kesalahan (*margin error*)

E = Jumlah Sample

3.4.1 Analisa Kinerja Ruas Jalan

Rumus ini digunakan untuk menentukan usulan rute Jalur sepeda. Rumus yang digunakan dalam analisa kinerja ruas jalan diantaraya berdasarkan Manual Kapasitas Jalan Indonesia (MKJI) tahun 1997.

1. Kapasitas

$$C = Co \times FCw \times FCsp \times FCsf \times FCcs$$

Sumber: 3MKJI (1997)

Keterangan:

C : Kapasitas (smp/jam)

Co : Kapasitas Dasar (smp/jam)

FCw : Faktor penyesuaian lebar jalan

FCsp : Faktor penyesuaian pemisah arah

FCsf : Faktor penyesuaian hambatan samping

Besarnya faktor penyesuaian dapat dilihat pada tabel berikut :

Tabel III. 1Kapasitas Dasar

No	Tipe Jalan	Kapasita	Catatan
		S	
1	Empat lajur terbagi	1650	Per lajur
	atau jalan satu		
	arah		
2	Empat lajur tidak	1500	Per lajur
	terbagi		
			Total
3	Dua lajur tak terbagi	2900	2
			arah

Tabel III. 2 Faktor Penyesuaian Pemisah Arah (FCsp)

Pemisa							
h Arah (SP %)		50 – 50	60 - 40	70 - 30	80 - 20	90 - 10	100 - 0
FCsp	2/2	1	0,94	0,88	0,82	0,76	0,7
	4/3	1	0,97	0,94	0,91	0,88	0,85

Tabel III. 3 Faktor Penyesuaian Lebar Jalur (FCw)

Tipe Jalan	Lebar jalur lalu lintas (Cw) (m)	FCw
	Per	
	lajur	
	3,00	0,92
Empat lajur terbagi atau jalan satu arah	3,25	0,96
	3,50	1,00
	3,75	1,04
	4,00	1,08
	Per	
	lajur	
	3,00	0,91
Empat lajur tak terbagi	3,25	0,95
	3,50	1,00
	3,75	1,05

	4,00	1,09
	Per	
	lajur	
	5,00	0,56
	6,00	0,87
Dua lajur tak terbagi	7,00	1,00
	8,00	1,14
	9,00	1,25
	10,00	1,29
	11,00	1,34

Tabel III. 4Faktor Penyesuaian Hambatan Samping (FCssf)

	Kelas		FCs	sf	
Tipe Jalan	hambatan	Lebar bahu efektif Ws			
	Samping	≤ 0,5	1,00	1,5	≥ 2,0
	VL	0,96	0,98	1,01	1,03
	L	0,94	0,97	1,00	1,02
4/2 D	М	0,92	0,95	0,98	1,00
	H VH	0,88	0,92	0,95	0,98
		0,84	0,88	0,92	0,96
	VL	0,96	0,99	1,01	1,03
	L	0,94	0,97	1,00	1,02

4/2 UD	М	0,92	0,95	0,98	1,00
	Н	0,88	0,91	0,95	0,98
	VH	0,80	0,86	0,90	0,95
	VL	0,94	0,96	0,99	1,01
	L	0,92	0.94	0,97	1,00
	М	0,89	0,92	0,95	0,98
2/2 UD Atau jalan	H VH	0,82	0,86	0,9	0,95
satu arah		0,73	0,79	0,85	0,91

Tabel III. 5 Faktor Penyesuaian Ukuran Kota (FCcs)

Ukuran Kota	Faktor penyesuaian
(Juta penduduk)	ukuran kota
0,1	0,86
0,1 - 0,5	0,90
0,5 - 1,0	0,94
1,0 - 3,0	1,00
> 3,0	1,04

Sumber: MKJI (1997)

2. Kecepatan Arus Bebas

FV = (FV0+FVW) x FFVSF x FFVcs

Sumber: MKJI 1997

FV : Kecepatan arus bebas kendaraan ringan (km/jam)

FV0 : Kecepatan arus bebas dasar kendaraan ringan

(km/jam)

FVW : Penyesuaian lebar jalur lintas efektif (km/jam)

FFVSF : Faktor penyesuaian hambatan samping

FFVCS : Faktor penyesuaian ukuran kota

Tabel III. 6 Kecepatan Arus Bebas (FV0) Untuk Jalan Perkotaan

	Kec			
	Kendaraan	Kendaraan	Sepeda	semua
Tipe jalan	Ringan	Berat	Motor	kendaraa
	LV	HV	MC	n (rat -
	LV	117	MC	rata)
Enam lajur terbagi (6/2 D)				
atau Tiga- lajur satu – arah	61	52	48	57
(3/1)				
Empat - lajur terbagi (4/2				
D)				
atau Dua - lajur satu –arah	57	50	47	55
(2/1)				
Empat - lajur tak terbagi				
(4/2 UD)	53	46	43	51
Dua lajur tak – terbagi				
(2/2 UD)	44	40	40	42

Tabel III. 7Faktor Penyesuaian Untuk Pengaruh Hambatan Samping dan Lebar Bahu (FFVs)

Tipe jalan	lintas	(km/ja
	efektif	m)
	(Wc) (m)	
Enam lajur terbagi (6/2	Perlajur	
D) Atau	3,00	-4
Jalan satu arah	3,25	-2
	3,50	0
	3,75	2
	4,00	4
Empat - lajur tak	Perlajur	
terbagi (4/2	3,00	-4
UD)	3,25	-2
	3,50	0
	3,75	2
	4,00	4
	Total	
	5,00	-9,5
	6,00	-3
Dua lajur tak-terbagi	7,00	0
(2/2 UD)	8,00	3
	9,00	4
	10,00	6
	11,00	7

Tabel III. 8 Faktor Penyesuaian Untuk Pengaruh Hambatan Samping dan Jarak Kereb Penghalang

	Kelas hambatan samping		•	esuaian untuk hambatan n jarak kerb - penghalang		
Tipe jalan	(SFC)	≤ 0,5 m	1,0 m	1,5 m	≥ 2m	
Empat lajur terbagi		1.00	1.01	1.01	1.00	
(4/2 D)	Sangat Rendah	1,00	1,01	1,01	1,02	
	Rendah	0,97	0,98	0,99	1,00	
	Sedang	0,93	0,95	0,97	0,99	
	Tinggi	0,87	0,90	0,93	0,96	
	Sangat Tinggi	0,81	0,85	0,88	0,92	
Empat - lajur tak						
terbagi	Sangat Rendah	1,00	1,01	1,01	1,02	
(4/2 UD)	Rendah	0,96	0,98	0,99	1,00	
	Sedang	0,91	0,93	0,96	0,98	
	Tinggi	0,84	0,87	0,90	0,94	
	Sangat Tinggi	0,77	0,81	0,85	0,90	
Dua lajur tak –						
terbagi	Sangat Rendah	0,98	0,99	0,99	1,00	
(2/2 UD)	(2/2 UD) Rendah		0,95	0,96	0,98	
atau jalan satu Sedang		0,87	0,89	0,92	0,95	
arah						
	Tinggi	0,78	0,81	0,84	0,88	
	Sangat Tinggi	0,68	0,72	0,77	0,82	

Tabel III. 9 Faktor Penyesuaian Ukuran Kota Pada Kecepatan Arus Bebas Kendaraan Ringan (FFVcs)

Ukuran Kota (Jumlah Penduduk)	Faktor penyesuaian untuk ukuran
	kota
<0,1	0,90
0,1 - 0,5	0,93
0,5 - 1,0	0,95
1,0 - 3,0	1,00
>3,0	1,03

3. Derajat Kejenuhan (Degree of Saturation, DS)

Sumber: MKJI (1997)

Keterangan:

 $Q\ : Volume\ lalu\ lintas\ (smp/jam)$

C : Kapasitas jalan (smp/jam)

4. Kecepatan dan waktu tempuh

Sumber : 5 MKJI (1997)

Keterangan:

V : Kecepatan (km/jam)

L : Panjang Segmen (km)

TT: Waktu tenpuh rata-rata (jam)

5. Tingkat Pelayanan

Tabel III. 10 Tingkat Pelayanan

Tingkat	Rasio V/C	Keterangan
Pelayanan		
А	0,00-0,20	Kondisi arus bebas dengan kecepatan
		tinggi dan volume lalulintas rendah.
В	0,21-0,44	Dalam arus stabil.
С	0,45-0,74	Dalam zona arus stabil. Pengemudi
		dibatasi dalam memilih kecepatan
D	0,75-0,84	Mendakati arus yang tidak stabil.
		Dimana hampir seluruh pengemudi
		akan dibatasi kecepatannya.
Е	0,85-1,00	Volume lalu lintas mendekati atau
		berada pada kapasitasnya.
F	>1,00	Arus yang dipaksakan atau macet pada
		kecepatan yang rendah.

Sumber: US-HCM (1994)

3.4.2 Analisa Simpang bersinyal

1. Volume (Q)

Tabel III. 11 Volume Simpang

Tipe kendaraan	emp			
l rpc nonuarum	Pendekat	Pendekat terlaw		
	terlindung	terraw		
LV	1,0	1,0		
HV	1,3	1,3		
MC	0,2	0,4		

Sumber: MKJI (1997)

Hitung jumlah untuk masing-masing jenis kendaraan dan pada masing-masing pendekat dan kalikan jumlah per jenis kendaraan pada tabel emp diatas untuk mendapatkan volume arus lalulintas dalam smp/jam.

2. Arus Jenuh Dasar (S₀)

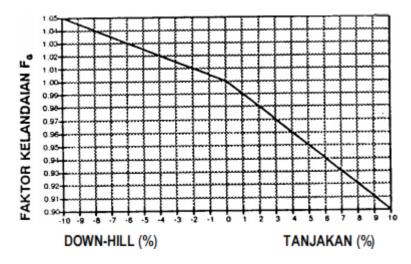
Arus jenuh dasar di dapatkan dari lebar efektif

 $S_0 = 600 \text{ x We}$

3. Faktor penyesuaian jumlah penduduk (F_{CF})

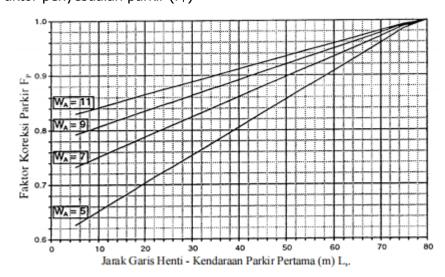
Tabel III. 12 Faktor Penyesuaian Jumlah Penduduk (Fcf)

Penduduk kota	Faktor penyesuaian ukuran kota	
(Juta jiwa)	(Fcs)	
> 3,0	1,05	
1,0-3,0	1,00	
0,5- 1,0	0,94	
0,1-0,5	0,83	
< 0,1	0,82	


Sumber: MKJI (1997)

4. Faktor penyesuaian hambatan samping (F_{SF})

Tabel III. 13 Faktor Penyesuaian Hambatan Samping (Fsf)


Lingkungan jalan	Hambatan samping	Tipe fase	Rasio kendaraan tak bermotor					
Julian			0,00	0,05	0,10	0,15	0,20	≥0,25
Komersial (COM)	Tinggi Sedang Rendah	Terlawan Terlindung Terlawan Terlindung Terlawan	0 93 0,93 0,94 0,94 0,95	0,88 0,91 0,89 0,92 0,90	0,84 0,88 0,85 0,89 0,86	0,79 0,87 0,80 0,88 0,81	0,74 0,85 0,75 0,86 0,76	0,70 0,81 0,71 0,82 0,72
	remain .	Terlindung	0,95	0,93	0,90	0,89	0,87	0,83
Permukiman (RES)	Tinggi Sedang Rendah	Terlawan Terlindung Terlawan Terlindung Terlawan Terlindung	0,96 0,96 0,97 0,97 0,98 0,98	0,91 0,94 0,92 0,95 0,93 0,96	0,86 0,92 0,87 0,93 0,88 0,94	0,81 0,99 0,82 0,90 0,83 0,91	0,78 0,86 0,79 0,87 0,80 0,88	0,72 0,84 0,73 0,85 0,74 0,86
Akses terbatas (RA)	Tinggi/Sedang/Rendah	Terlawan Terlindung	1,00 1,00	0,95 0,98	0,90 0,95	0,85 0,93	0,80 0,90	0,75 0,88

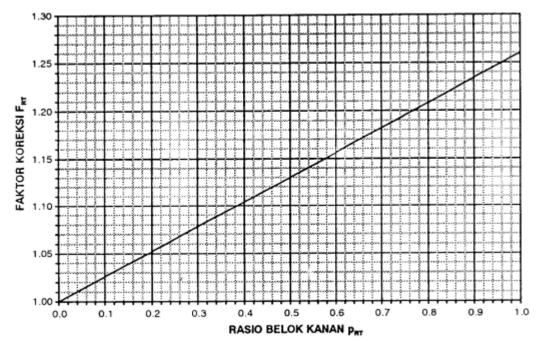
5. Faktor penyesuaian kelandaian (F_G)

Sumber: MKJI (1997)

6. Faktor penyesuaian parkir (F_P)

Faktpr penyesuaian parkir ditentukan berdasarkan fungsi jarak dari garis henti sampai kendaraan yang diparkir pertama dan lebar pendekat.

$$F_p = [L_p/3 - (W_A - 2) \times (L_p/3 - g)/W_A]/g$$


Dimana:

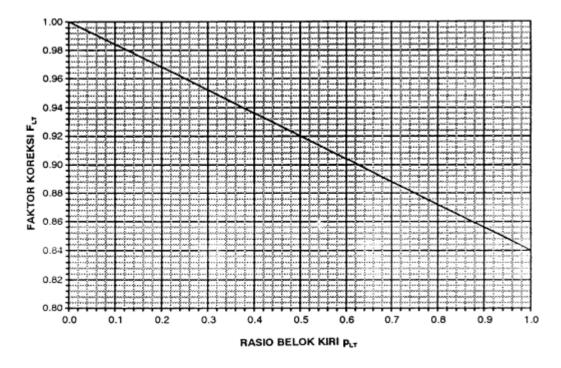
L_p = Jarak antara garis henti dan kendaraan yang diparkir pertama atau panjang dari lajur pendek (m).

W_a = Lebaar pendekat (m)

G = Waktu hijau pada pendekat (nilai normal 26 detik)

7. Faktor penyesuaian belok kanan (F_{RT})

Sumber : MKJI (1997)


Faktor penyesuaian belok kanan ditentukan dari rasio kendaraan belok kanan. Faktor penyesuaian belok kanan hanya berlaku untuk pendekat tipe terlindung, jalan dua arah. Lebar efektif ditentukan oleh lebar masuk.

F_{RT} dapat dihitung juga melalui rumus berikut :

$$F_{RT} = 1.0 - P_{RT} \times 0.26$$

Sumber: MKJI (1997)

8. Faktor penyesuaian belok kiri (F_{LT})

Sumber: 6 MKJI (1997)

Ditentukan sebagai fungsu dari rasio belok kiri. Faktor penyesuaian belok kiri hanya berlaku untuk pendekat tipe terlindung tanpa belok kiri langsung. Lebar efeltif ditentukan oleh lebar masuk. F_{LT} dapat juga dihitung dengan rumus berikut

$$F_{LT} = 1.0 - P_{LT} \times 0.16$$

9. Arus Jenuh (S)

$$S = S_O x F_{CS} x F_G x F_P x F_P x F_{RT} x F_{LT}$$

Sumber: 8 MKJI (1997)

10. Kapasitas Simpang (C)

Sumber: 9 MKJI

Keterangan =

S = Arus Jenuh (smp/jam hijau)

g = waktu hijau (detik)

c = waktu siklus

11. Drajat Kejenuhan (DS)

$$DS = Q/C$$

Sumber: MKJI (1997)

Q = Arus total (smp/jam)

C = kapasitas (smp/jam)

12. Tundaan Rata-rata

$$DT = c x \frac{0.5 x (1 - GR)}{(1 - GR X DS)} + \frac{NQ2 x 3600}{C}$$

Sumber: 10 MKJI (1997)

DT = Tundaan lalulintas rata-rata

c = Waktu siklus yang disesuaikan

 NQ_1 = Jumlah smp yang tersisa dari fase hijau sebelumnya.

C = Kapasitas (smp/jam)

DS = Drajat kejenuhan

13. Antrian

$$NQ = NQ_1 + NQ_2$$

Sumber: 11 MKJI (1997)

NQ = Jumlah smp yang tertinggal fase hijau sebelumnya

 NQ_2 = Jumlah fase yang datang selama waktu merah

14. Tingkat Pelayanan berdasarkan Tundaan

Tabel III. 14 Tingkat Pelayanan Simpang

Kondisi Tundaan	Tingkat Pelayanan
< 5 detik	А
5-15 Detik	В
15-25 Detik	С
25-40 Detik	D
40-60 Detik	E
>60 Detik	F

Sumber: 12PM NO. 96 Tahun 2015

3.4.3 Analisa Penentuan Rute Jalur Sepeda

Dalam perencanaan jalur sepeda yang menghubungkan alun alun menuju simpang lima, teradapat 2 rute jalan yang dapat digunakan yang memiliki kelebihan dan kekurangan masing masing. Dalam menentukan rute ada beberapa indikator penilaian. Indikator tersebut adalah kinerja lalulintas dan tingkat pelayanan jala tersebutserta tataguna lahan sekitar jalan. Berikut adalah indikator yang digunakan untuk menentukan jalur sepeda berdasarkan PM 59 Tahun 2020 :

1. Aspek Kemudahan (Aksesibilitas)

Dalam hal ini, pertimbangan yang digunakan untuk aspek kemudahan adalah kemauan orang dalam bersepeda. Kemudahan akses ini untuk menjangkau penyewaan sepeda atau dock sepeda.

2. Aspek Keselamatan dan Kenyamanan

Dalam penilaian pada aaspek ini, ada 3 indikator yang digunakan yaitu :

a. Kecepatan lalu lintas

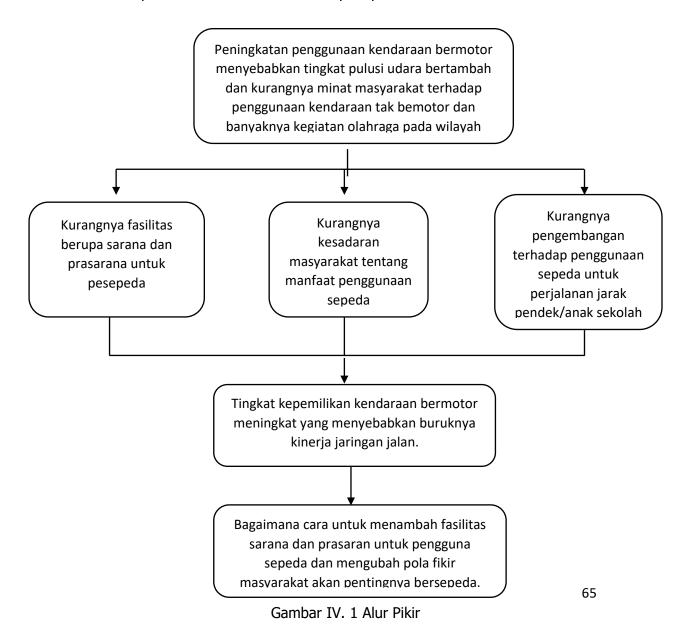
Semakin tinggi kecepatan lalulintas di jalan yang di lalui rute jalur sepeda, maka tingkat fatalitas yang mengancam pengguna sepeda semakin tinggi juga.

b. Konflik dengan kendaraan bermotor

Pada aspek ini memiliki arti yaitu banyaknya suatu rute melewati persimpangan. Hal ini dikarenakan pada persimpangan tersebut akan terjadi konflik dengan kendaraan bermotor.

c. Konflik dengan kendaraan besar

Semakin tinggi atau panjang rute bercampur dengan kendaraan besar maka tingkat kenyamanan bagi pengendara sepeda semakin menurun juga.

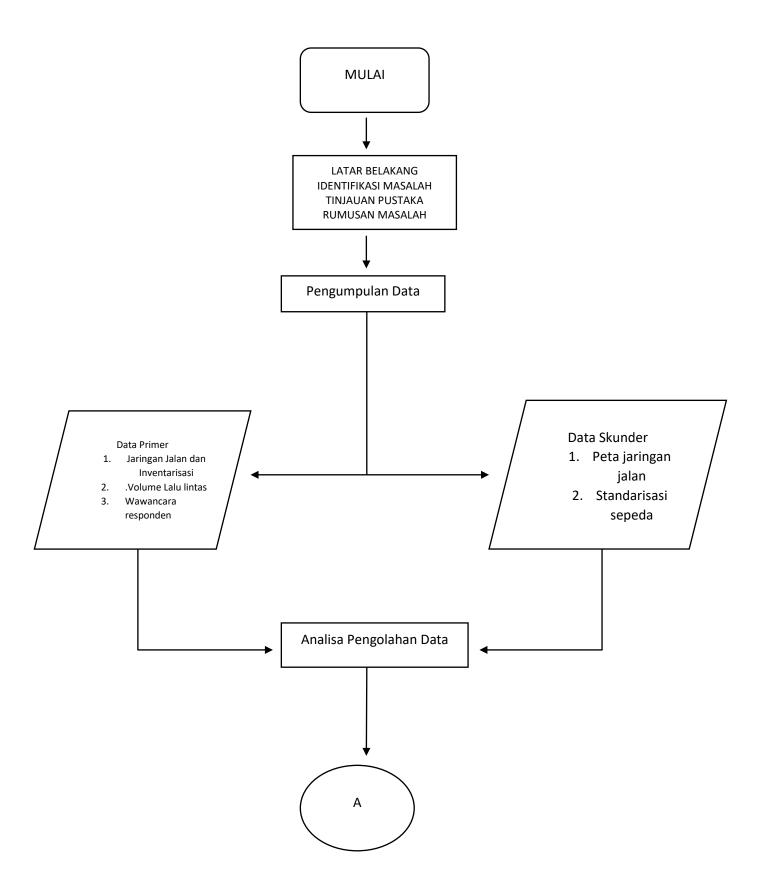

3. Aspek tingkat penurunan kinerja ruas jalan dan simpang

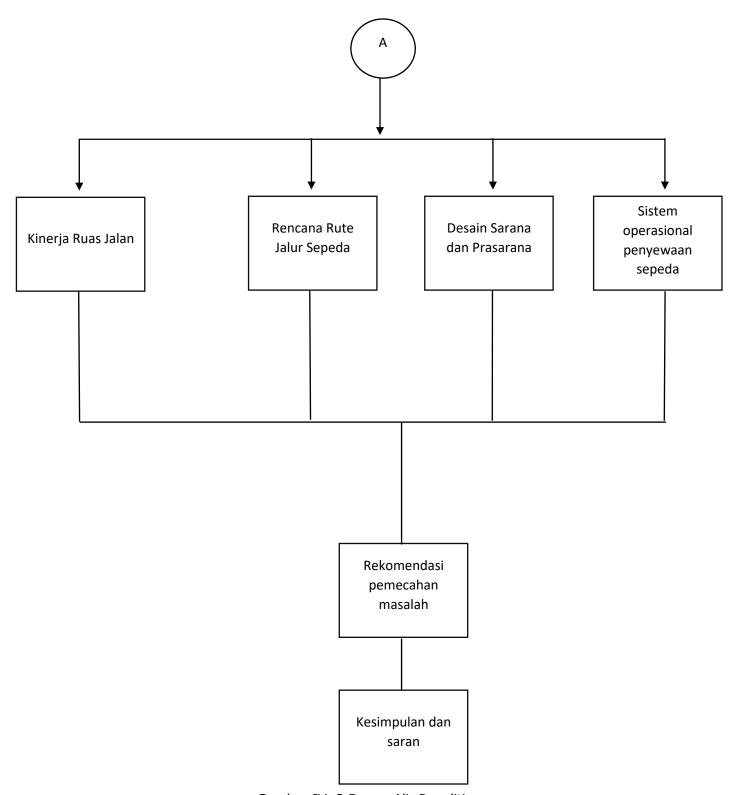
Dalam mngetahui tingkat penurunan kinerja ruas jalan akibat adanya jalur sepeda, pengamat menggunakan indikator V/C ratio dikarenakan dengan adanya jalur sepeda menimbulkan penurunan atau pengurangan pada kapasitas jalan akibat pembagian badan jalan untuk kepentingan jalur sepeda.

BAB IV METODOLOGI PENELITIAN

4.1 Alur Pikir

Alur pikir penelitian merupakan tahapan – tahapan kegiatan yang dilakukan dalam melakukan analisa dari tahap awal penelitian sampai pada tahap akhir penelitian, dimana akan menghasilkan suatu usulan – usulan dan kesimpulan. Alur pikir penelitian tersebut sangat penting adanya, agar pembaca dapat mengerti dengan menjelaskan dan meringkas mengenai objek yang ditulis serta alur dari penelitian. Berikut adalah alur pikir penelitian ini




4.2 DESAIN PENELITIAN

Desain penelitian merupakan gambatan mengenai langkah – langkah yang akan dilakukan dalam penelitian. Desain penelitian ini berawal dari masalah yang bersifat kuantitatif dan membatasi permasalahan yang ada pada rumusan masalah. Pendeskriptifan setiap variable penelitian harus disesuaikan dengan perumusan masalah dan tujuan dari penelitian seperti yang telah dijelaskan pada Bab I. Penelitian dalam studi ini terbatas pada analisis sistem lalu lintas dan lebih spesifik pada pemberlakuan jalur sepeda khusus dengan memberikan pelayanan jasa penyewaan sepeda berbasis *Bike Sharing System*. Studi ini bertujuan mengkaji kinerja lalu lintas berdasarkan indikator – indikator lalu lintas dan kemudian merancangan suatu jalur sepeda khusus yang didukung oeh jasa penyewaan sepeda berbasis Bike Sharing System yang menggunakan bantuan *Smart Card*. Permasalahan – permasalahan yang terjadi di wilayah studi dikarenakan meningkatnya aktifitas masyarakat menggunakan sepeda dari Alun alun menuju Simpang limaserta adanya penerapan tentang konsep Kota Hijau di Kabupaten Grobogan. Seluruh kegiatan dari penelitian ini dapat digambarkan secara ringkas dan jelas dengan bagan alir seperti terlihat pada

4.3 BAGAN ALIR PENELITIAN

Bagan Alir penelitian merupakan tahapan – tahapan kegiatan yang dilakukan dalam melakukan analisa dari tahap awal penelitian sampai pada tahap akhir penelitian, dimana akan menghasilkan suatu usulan - usulan dan kesimpulan. Kerangka penelitian tersebut sangat penting adanya agar pembaca dapat mengerti dengan jelas dan ringkas mengenai objek yang ditulis serta alur dari penelitian.

Gambar IV. 2 Bagan Alir Penelitian

4.4 METODE PENELITIAN DAN ANALISIS

4.5.1 Metode Pengumpulan Data

Pengumpulan data dilaksanakan dalam 2 jenis yaitu Data Sekunder dan Data Primer. Dimaksudkan untuk mendukung rekomendasi serta alasan pemilihan rute Jalur sepeda.

4.5.2 Pengumpulan Data Sekunder

Data sekunder ini diperoleh dari studi Laporan Umum Praktek Kerja Lapangan Kabupaten Grobogan Tahun 2021 yaitu :

1. Data Inventarisasi Ruas Jalan di Kabupaten Grobogan

Data inventarisasi jalan yang dimaksudkan untuk mengidentifikasi karakteristik jalan, antara lain: panjang jalan, lebar jalan, kondisi jalan; dan juga fasilitas perlengkapan jalan dengan pertimbangan bahwa komponen-komponen tersebut dapat mempengaruhi kapasitas ruas jalan maupun kapasitas persimpangan, pergerakan kendaraan yang berkeselamatan.

Target data yang di peroleh adalah status jalan, fungsi jalan, panjang jalan, lebar jalan, jumlah lajur, jumlah jalur, tipe jalan, lebar efektif jalan, lebar median jalan, lebar bahu jalan, hambatan samping, jenis perkerasan, kondisi jalan, lebar parkir, model arus, lebar trotoar, lebar drainase, luasan kerusakan jalan, akses, tata guna lahan, fasilitas dan pembinaan jalan.

2. Data Inventarisasi Simpang di Kabupaten Grobogan

Data inventarisasi simpang dimaksudkan untuk mengidentifikasi karakteristik simpang, lebar pendekat, radius, hambatan samping, dan juga fasilitas perlengkapan simpang dengan pertimbangan bahwa komponen-komponen tersebut dapat mempengaruhi kapasitas simpang, pergerakan serta keselamatan lalu lintas. Target data yang didapat dari survei inventarisasi simpang ini adalah tipe pendekat, tipe simpang, tipe pengendalian, lebar pendekat, lebar efektif simpang, lebar median, lebar bahu,lebar parkir, radius, hambatan samping, luas kerusakan simpang, jumlah akses, tata guna lahan, jenis perkerasan, kondisi simpang, serta fasilitas kelengkapan simpang.

Data Pencacahan Lalu Lintas

Data dimaksudkan untuk mengetahui tingkat kepadatan arus lalu lintas pada ruas jalan kordon dalam dan kordon luar dalam satuan waktu tertentu guna menentukan tingkat pelayanan pada jalan. Hasil pengumpulan data ini sebagai masukan untuk melaksanakan manajemen dan rekayasa lalu lintas di ruas jalan. Maksud dari data tersebut untuk menghitung volume lalu lintas pada ruas jalan kordon dalam dan kordon luar dalam satuan waktu tertentu yang dilakukan dengan dan pencacahan pengamatan langsung lapangan. Sedangkan tujuannya adalah untuk mengetahui periode waktu sibuk pada masingmasing ruas jalan yang telah di survei.

4. Data Gerakan Membelok Terklasifikasi

Pengumpulan data arus lalu lintas dimaksudkan untuk mengetahui tingkat kepadatan arus lalu lintas pada persimpangan dalam satuan waktu tertentu guna menentukan tingkat pelayanan di persimpangan. Hasil pengumpulan data ini merupakan masukan untuk melaksanakan

manajemen dan rekayasa lalu lintas di persimpangan.

Data ini dimaksudkan untuk mengetahui tingkat kepadatan lalu lintas pada suatu persimpangan berdasarkan volume lalu lintas terklasifikasi yang mencakup jenis kendaraan dan arah gerakan kendaraan, dengan melakukan pengamatan dan pencacahan langsung pada tiap-tiap kaki persimpangan dan periode waktu tertentu. Sedangkan tujuannya adalah untuk desain geometrik persimpangan, menganalisa sistem pengendalian persimpangan, dan kapasitas jalan. Survei ini perlu dilakukan karena sebagian besar hambatan perjalanan terjadi pada persimpangan yang disebabkan karena persimpangan merupakan suatu sistem pembagian ruang, jadi bila satu kendaraan memperoleh prioritas, maka kendaraan yang lain akan terhambat.

5. Data Kecepatan Perjalanan

Data kecepatan perjalanan merupakan parameter yang penting khususnya dipergunakan dalam penentuan tingkat pelayanan jalan, evaluasi efektifitas dan perbaikan lalu lintas, analisis data kecelakaan, analisis ekonomi terutama dampak kecepatan terhadap peningkatan/penurunan manfaat ekonomi dan dapat digunakan sebagai acuan untuk keperluan desain dan perencanaan pembangunan jalan baru. Tujuanya adalah untuk mengevaluasi kinerja ruas jalan serta tingkat pelayanan jalan yang ada di wilayah studi Kabupaten Grobogan berdasarkan data kecepatan perjalanan tiap ruas jalan.

6. Data Hambatan

Data hambatan terdiri dari data hambatan di ruas dan data hambatan di simpang. Untuk memperoleh data hambatan di ruas berdasarkan hasil Survei Moving Car Observer (MCO) dan Floating Car Observer (FCO), sedangkan untuk hambatan di simpang diperoleh dari hasil survei hambatan di simpang.

4.5.3 Pengumpulan Data Primer

Pengumpulan data primer dilakukan dengan melaksanakan survei langsung di lapangan.

Adapun survei yang dilakukan meliputi :

1. Survei Wawancara Responden

dilakukan tersebut Survei wawancara untuk mendapatkan informasi berdasarkan pendapat responden atau narasumber mengenai minat masyarakat untuk bersepeda dan minat terhadap penerapan aplikasi Bike Sharing System di Kabupaten Grobogan. Target responden dari wawancara tersebut adalah masyarakat kabupaten Grobogan dan sebagian ditujukan kepada siswa/i Kabupaten Grobogan, para pekerja di lingkup Kabupaten Grobogan, serta para pecinta olahraga bersepeda. Penentuan jumlah responden berdasarkan penentuan jumlah populasi di zona yang terjangkau oleh rute Jalur sepeda.

2. Survei Inventarisasi Ruas jalan

Survei ini dimaksudkan untuk mendapatkan data inventarisasi beberapa ruas jalan yang akan dikaji sebagai Rute Jalur sepeda. Target data yang di dapat adalah :

- Panjang Ruas
- 2. Lebar Jalur Efektif

- 3. Lebar Bahu Jalan
- 4. Lebar Trotoar
- 5. Lebar Median
- 6. Jenis Perkerasan Jalan
- 7. Jumlah Lajur
- 8. Jalan berdasarkan status dan fungsi
- 9. Fasilitas perlengkapan dan pendukung jalan
- 10. Hambatan Samping

3. Survei Volume lalu lintas

Survei pencacahan lalu lintas terklasifikasi yang dimaksudkan adalah untuk mengetahui tingkat kepadatan lalu lintas pada ruas jalan berdasarkan volume lalu lintas terklasifikasi, arah arus lalu lintas, jenis kendaraan dalam satuan waktu tertentu yang dilakukan dengan pengamatan dan pencacahan langsung di lapangan. Tujuan pelaksanaan suvei adalah untuk mengetahui periode jam-jam sibuk pada masing – masing titik survei. Target data yang didapat dari survei pencacahan lalu lintas terklasifikasi adalah sebagai berikut:

- Volume lalu lintas tiap satuan waktu per 15 menit untuk tiap tiap jenis kendaraan per arah
- Volume jam sibuk untuk setiap bagian waktu, misalnyajam sibuk pagi, jam sibuk siang, dan jam sibuk sore.
- 3. Volume lalu lintas pengguna kendaraan tidak bermotor per arah

4.5.4 Metode Analisis Data

Setelah memperoleh data, langkah selanjutnya adalah pengolahan data.

1. Kinerja Ruas Jalan

a. VCR

Survei pencacahan lalu lintas terklasifikasi yang dimaksudkan adalah untuk mengetahui tingkat kepadatan lalu lintas pada ruas jalan berdasarkan volume lalu lintas terklasifikasi, arah arus lalu lintas, jenis kendaraan dalam satuan waktu tertentu yang dilakukan dengan pengamatan dan pencacahan langsung di lapangan dan melakukan survei inventarisasi untuk mengetahui keadaan pada ruas tersebut dan di hitunglah dengan faktor penyesuaian yang sudah ditentukan dan didapatkan lah kapasitas suatu ruas. Llau lakukan perhitungan dengan cara volume dibagi dengan kapasitas ruas jalan tersebut.

b. Kecepatan

Data kecepatan dapat di hasilkan dari data arus bebas dan data MCO (Moving Car Observer). Survei MCO dilakukan di ruas jalan yang akan diuji dan melakukan pencatatan kendaraan yang mendahului dan hambatan samping yang ada dan juga menghitung waktu pejalanan pada ruas tersebut. Kecepatan kendaraan dijalankan dengan kecepatan rata rata pada ruas jalan tersebut.

c. Kepadatan

Kepadatan pada ruas di dapatkan dari hasil volume dibagi kecepatan rata rata. Data Volume di dapatkan ketika melakukan survei pencacahan lalulintas terklasifikasi.

4. Kinerja Simpang Bersinyal

a. Drajat Kejenuhan

Drajat kejenuhan adalah rasio lalu-lintas terhadap kapasitas di suatu pendekat. Hal yang mempengaruhi drajat kejenuhan adalah waktu siklus, arus jenuh, arus lalulintas yang mendekati pendekat dan waktu hijau pada suatu simpang.

b. Tundaan

Tundaan adalah waktu tempuh tambbahan yang dibutuhkan untuk melewati simpang. Tundaan ada dua yaitu tundaan arus dan tundaan geometri. Tundaan lalulintas adalah waktu menunggu yang disebabkan interaksi lalulintas yang bertentangan. Tundaan geometri adalah waktu menunggu yang disebabkan oleh perlambatan dan percepatan kendaraan yang membelok di simpang atau yang terhenti dilampu merah.

c. Antrian

Antrian adalah jumlah kendaraan yang antri dalam suatu pendekat. Antrian dapat dihitung dengan menentukan jumlah smp kendaraan yang tertinggal dari fase hijau dan jumlah smp kendaraan yang datang selama fase merah.

5. Penentuan Rute Jalur sepeda

Perencanaan tahap awal ialah dengan menetukan ruas jalan yang di gunakan untuk rute Jalur sepeda dari Alun alun menuju Simpang limadengan mempertimbangkan :

a. Kinerja Ruas Jalan

Kinerja jalan tersebut (V/C Ratio, Kecepatan, Kepadatan). Kinerja ruas jalan adalah suatu ukuran kualitatif yang menjelaskan operasional dalam arus lalulintas. Angka ini didapat dari hasi bagi dari volume ruas jalan di bagi kapasitas ruas jalan tersebut. Semakin hasilnya mendekati satu atau melebihi satu maka kinerja jalan tersebut semakin buruk.

b. Komposisi volume lalu lintas ruas jalan tersebut;

Komposisi volume lalu lintas adalah jenis kendaraan terklasifikasi yang melewati jalan tersebut.

c. Kinerja Simpang

Kinerja Simpang adalah suatu ukuran kualitatif yang menjelaskan operasional dalam arus lalulintas suatu

pendekat. Angka ini didapat dari hasi bagi dari volume ruas jalan suatu pendekat di bagi kapasitas ruas jalan tersebut. Semakin hasilnya mendekati satu atau melebihi satu maka kinerja jalan tersebut semakin buruk.

- 2. Analisis data Wawancara responden dengan menggunakan beberapa indikator unjuk kerja
 - a. Pengecekan Data (Editing)
 - b. Klasifikasi Jawaban (Coding)
- 3. Usulan rancangan aplikasi *Bike Sharing System* dengan beberapa indikator penunjang
 - a. Topologi Smart Bike Shairng System
 - b. Desain Rancangan Bike Sharing System
 - c. Sarana Dan Prasarana Penunjang
 - d. Pelayanan dan Pengoperasian
 - 4. Skenario konsep desain dan pengoperasian rute jalur sepedakhusus dengan jasa penyewaan sepeda berbasis *Bike Sharing System*.

BAB V ANALISIS DAN PEMECAHAN MASALAH

5.1 KONDISI EKSISTING

5.1.1 KINERJA RUAS JALAN

Untuk menghubungkan alun-alun menuju simpang lima, ada beberapa ruas jalan. Berikut adalah inventarisasi ruas jalan yang dapat digunakan sebagai berikut :

Tabel V. 1Inventarisasi Ruas Yang Dapat Diakses

No	Nama Jalan	Fungsi Jalan	Panjang Ruas (m)	Tipe	Lebar Jalan Efektif (m)	Lebar per Jalur (m)	Lebar Bahu (m)	Median (m)	Kelas Hambatan Samping
1	Jl. S Parman	Lokal	200	2/2 UD	9	4,5	0,5	0	L
2	Jl. Hayam Wuruk I	Lokal	600	2/1 UD	8	8	0,5	0	М
3	Jl. Hayam Wuruk II	Lokal	520	2/1 UD	8	8	0,5	0	L
4	Jl. Bayangkara	Lokal	1280	2/1 UD	8	8	1,5	0	L
5	Jl. Sudirman I	Lokal	180	2/1 UD	7	7	1,5	0	L
6	Jl. Dr. Sutomo	Lokal	430	2/2 UD	8	4	1,5	0	М
7	Jl. Suhada	Lokal	150	2/2 UD	9	4,5	1	0	М

No	Nama Jalan	Fungsi Jalan	Panjang Ruas (m)	Tipe	Lebar Jalan Efektif (m)	Lebar per Jalur (m)	Lebar Bahu (m)	Median (m)	Kelas Hambatan Samping
8	Jl. MT. Haryono	Lokal	330	2/2 UD	7	3,5	1	0	L

Dari data inventarisasi di atas, dilakukannlah analisis kinerja ruas jalan. Data kinerja ruas jalan dapat dihitung dengan menggunakan faktor penyesuaian sesuai dengan data inventarisasi **Tabel V.1** dan disesuaikan dengan faktor penyesuaian yang terdapat pada **Tabel III.1** hingga **Tabel III.5**. Berikut adalah data kinerja ruas jalan yang dapat menggunakan faktor koreksi yang menghubungkan alun-alun menuju simpang lima:

Tabel V. 2 Kinerja Keseluruhan Ruas Jalan

No	Nama Jalan	Panjang Ruas (m)	Со	FCw	FCsp	FCsf	FCcs	Kapasitas Jalan (C)	Volume (smp/jam)	V/C Ratio	KECEPATAN (KM/JAM)	KEPADATAN (smp/Km)
1	Jl. S Parman	200	2900	0,87	1	0,92	1	2321,16	617,4	0,185	33,53	20
2	Jl. Hayam Wuruk I	600	3300	1,08	1	0,97	1	3457,08	1042,0	0,301	33,53	31
3	Jl. Hayam Wuruk II	520	3300	1,08	1	0,97	1	3457,08	529,4	0,153	33	16
4	Jl. Bayangkara	1280	3300	1,08	1	0,97	1	3457,08	944,4	0,273	46,52	20
5	Jl. Sudirman I	180	3300	1	1	0,89	1	2937,00	265,8	0,090	30,34	9
6	Jl. Dr. Sutomo	430	2900	1,14	1	0,95	1	3140,70	574,5	0,183	35,55	16
7	Jl. Suhada	150	2900	1	1	0,94	1	2726,00	161,7	0,048	31,40	5
8	Jl. MT. Haryono	330	2900	1,25	1	0,92	1	3335,00	418,1	0,153	33,21	13

5.1.2 KINERJA SIMPANG

Untuk perencanaan jalur sepeda yang menhubungkan alun alun menuju simpang lima, ruas yang dapat digunakan melewati beberapa simpang bersinyal. Dalam perhitungan untuk menentukan kinerja simpang, faktor penyesuaian dapat dilihat pada **Tabel III.11.** Berikut adalah kondisi ekstisting simpang bersinyal tersebut.

1. Simpang 4 Kencana

Tabel V. 3 Kinerja Simpang Kencana

					Δ	rus jenuh sr	np/jan	n hijau					Kapasit	
		Leb			Fak	tor-faktor k	oreksi			Nilai di	Arus	Ras	as	
		ar	Nilai					Hanya tipe		sesuai	Lalulint	io	(smp/j	Derajat
Kode	Tipe	efek	dasar		Semua Tip	<u>e pendekat</u>		Pendekat		kan	as	Aru	am)	kejenu
pende kat	Pende kat	tif (m)	(smp/j am	Ukur an	Hambat an	Kelandaia n	Par kir	Belok Kanan	Bel ok	(smp/j am hijau)	(smp/j am)	s FR	S.g /c	han
		We	hijau)	Kota	Samping				Kiri		0	OIC	C	0/0
		we	S0	Fcs	Fsf	Fg	Fp	FRT	FLT	S	Ų	Q/S	C	Q/C

(1)	(3)	(9)	(10)	(11)	(12)	(13)	(14)	(1	5)	(16)	(17)	(18)	(19)	(22)	(23)
										0,9	32037,		0,0		
U	Р	3,50	2100	1,00	0,94	1,00	1,00	17,	26	4	98	45	01	5156	0,01
										0,9	19328,		0,0		
S	Р	4,50	2700	1,00	0,92	1,00	1,00	8,4	9	2	40	742	38	4888	0,15
										1,0	33827,		0,0		
Т	T P 6,00 3600 1,00 0,94						1,00	10,	00	0	13	105	03	6999	0,02
									0,9	1582,9		0,1			
В	B P 3,00 1800 1,00 0,94						1,00	1,0	0	4	3	276	74	328	0,84
Waktu s	siklus pra	penyes	uaian C ı	ıa (det)				35,1347							
Waktu s	siklus dis	esuaika	n (C) (de	et)				87							

Diatas adalah kondisi eksisting simpang 4 kencana. Simpang kencana memiliki drajat kejenuhan terbesar yaitu pada pendekat dari arah barat yaitu jalan Ahmad Yani sebesar 0,84. Dari data di atas kemudian didapatkan lah data antrian tundaan yang akan menentukan kinerja simpang tersebut. Berikut adalah hambatan dan tundaan Simpang 4 Kencana.

Tabel V. 4 Antrian dan Tundaan Simpang Kencana

					1	mlah k	endaraan antri (cmn)			Jumlah		Tundaan	
	Arus		Drajat	Rasio	Ju	IIIIaii K	endaraan antii (silip)	Panjang	Rasio	Kendaraan	Tundaan	Tundaan	Tundaan
Kode	Lalulintas	Kapasitas	Kejenuhan	Hijau					Antrian	Kendaraan	Terhenti	lalulintas	Geometrik	Rata
Pendekat	smp/jam	(smp/jam)	DS	GR			Total NQ1 +	NO			rement	rata-rata	rata rata	rata
rendekat	Simp/ juill		55	O.V			NQ2	NQ						D=
								max	QL	NS	N SV	DT	DG	DT+DQ
	Q	С	Q/C	g/c	NQ1	NQ2	NQ		(m)	stop/smp	smp/jam	det/smp	det/smp	det/smp
U	45	5156	0,01	0,003	0	0,44	0,44	0,44	2,53	0,362	16	0	1,64	1,64
S	742	4888	0,15	0,005	0	7,22	7,22	7,22	32,08	0,362	269	0	2,45	2,45
Т	105	6999	0,02	0,003	0	1,02	1,02	1,02	3,41	0,363	38	0	2,45	2,45

В	276	328	0,84	0,055	0 2,67	2,67	2,67	17,79	0,360	99	0	2,44	2,44
	_		_				•	13,953	_				2.24

Dari tabel di atas dapat diketahui bahwa panjang antrian pada ruas tersebut rata rata sepanjang 13,9 meter dan memiliki tundaan sebesar 6 detik/smp

2. Simpang 4 MT. Haryono

Tabel V. 5 Kinerja Simpang MT. Haryono

				Arus jenuh	smp/ja	m hijau				Arus		Kapasita	
			Fa	ktor-faktor	koreksi		•		Nilai di	Lalulinta	Rasi	S	Derajat
Kode pendek	Nilai dasar		Semua Tipe	e pendekat		Hanya tipe Pendekat			sesuaik an	s (smp/ja	o Arus	(smp/ja m)	kejenuh an
at	(smp/ja	Ukura n	Hambat an	Kelandai	Parki	Belok Kanar	1	Belo k	(smp/ja m hijau)	m)	FR	S.g /c	
	m hijau)	Kota	Samping	an	r			Kiri		Q	Q/S	С	Q/C
	S0	Fcs	Fsf	Fg	Fp	FRT		FLT	S	ץ	Q/3	C	Q/C
(1)	(10)	(11)	(12)	(13)	(14)	(15)		(16)	(17)	(18)	(19)	(22)	(23)
U	2100	1,00	0,94	1,00	1,00	1	,16	0,98	2248,14	155	0,07	428	0,36
S	2100	1,00	0,94	1,00	1,00	1	,02	0,99	1985,70	298	0,15	441	0,68
Т	1996,4	1,00	0,95	1,00	1,00	1	,02	0,96	1860,71	92	0,05	413	0,22
В	2189,2	1,00	0,95	1,00	1,00	1	,03	0,89	1895,24	271	0,14	421	0,64
	Waktu sikl	us pra pe	nyesuaian C	ua (det)		25,297							
	Waktu s	iklus dise	suaikan (C)	(det)		63							

Diatas merupakan kondisi eksisting simpang 4 jalan MT. Haryono. Dapat diketahui dari tabel diatas bahwa drajat kejenuhan terbesar terjadi pada kaki singpang tipe pendekat dari arah selatan yaitu di jalan MT. Haryono dengan drajat kejenuhan sebesar 0,64. Dari data di atas kemudian didapatkan lah data antrian tundaan yang akan menentukan kinerja simpang tersebut. Berikut adalah hambatan dan tundaan simpang MT. Haryono.

Tabel V. 6 Antrian dan Tundaan Simpang MT. Haryono

					lu	ımlah ke	ndaraan antri (smn)			Jumlah		Tundaan	
	Arus		Drajat	Rasio		iiiiaii ke	indardan antir (311107	Panjang	Rasio	Kendaraan	Tundaan	Tundaan	Tundaan
Kode	Lalulintas	Kapasitas	Kejenuhan	Hijau					Antrian	Kendaraan	Terhenti	lalulintas	Geometrik	Rata
Pendekat	smp/jam	(smp/jam)	DS	GR			Total NQ1 +					rata-rata	rata rata	rata
Terrackat	3p, ja			O.T.			NQ2	NQ max						D=
									QL	NS	N SV	DT	DG	DT+DQ
	Q	С	Q/C	g/c	NQ1	NQ2	NQ		(m)	stop/smp	smp/jam	det/smp	det/smp	det/smp
U	155	428	0,362	0,028	0,000	1,069	1,069	1,069	6,111	0,355	55,002	0,000	2,190	2,190
S	298	441	0,675	0,032	0,536	2,072	2,608	2,608	14,903	0,450	134,124	4,373	2,800	7,173
Т	92	413	0,223	0,034	0,000	0,632	0,632	0,632	3,612	0,352	32,507	0,000	2,407	2,407
В	271	421	0,643	0,033	0,399	1,881	2,280	2,280	13,027	0,433	117,246	3,413	2,731	6,144
									9,413					4,4

Dari tabel di atas dapat diketahui bahwa panjang antrian pada ruas tersebut rata rata sepanjang 9,4 meter dan memiliki tundaan sebesar 6 detik/smp

3. Simpang Alun-alun

Tabel V. 7 Kinerja Simpang Alun alun

				Arus jenuh ktor-faktor l		m hijau		Nilai di	Arus Lalulinta	Rasi	Kapasita s	Derajat
Kode pendek	Nilai		Semua Tipe	e pendekat		Hanya tipe Pendekat		sesuaika n	s (smp/ja	o Arus	(smp/ja m)	kejenuh an
at	dasar (smp/ja	Ukura n	Hambat an	Kelandai	Parki	Belok Kanan	Belo k	(smp/ja m hijau)	m)	FR	S.g /c	
	m hijau)	Kota	Samping	an	r		Kiri		Q	Q/S	С	Q/C
	S0	Fcs	Fsf	Fg	Fp	FRT	FLT	S	Q	Q/3	C	Ş
(1)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(22)	(23)
U	1800	1,00	0,89	1,00	1,00	2,82	0,85	3849,03	511	0,13	3849	0,13
S	3600	1,00	0,94	1,00	1,00	8,29	0,99	27913,8	424	0,02	3194	0,13
В	2700	1,00	0,94	1,00	1,00	1,00	0,95	2419,59	100	0,04	752	0,13

Diatas merupakan kondisi eksisting simpang alun-alun. Pada simpang alun-alun memiliki drajat kejenuhan yang sama pada setiap pendekat yaitu 0,13. Dari data di atas kemudian didapatkan lah data antrian tundaan yang akan menentukan kinerja simpang tersebut. Berikut adalah hambatan dan tundaan simpang Alun alun.

Tabel V. 8 Antrian dan Tundaan Simpang Alun alun

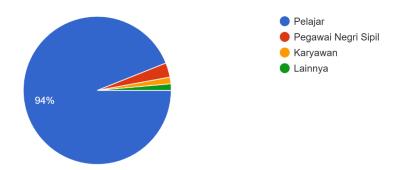
					1	umlah	kendaraan antri	(cmn)			Jumlah		Tundaan	
	Arus		Drajat	Rasio	,	ullilali	Kendaraan antii	(SITIP)	Panjang	Rasio	Kendaraan	Tundaan	Tundaan	Tundaan
Kode	Lalulintas	Kapasitas	Kejenuhan	Hijau					Antrian	Kendaraan	Terhenti	lalulintas	Geometrik	Rata
Pendekat	smp/jam	(smp/jam)	DS	GR			Total NQ1 +				rement	rata-rata	rata rata	rata
rendekat	3iiip/jaiii		D3	GIV			NQ2	NQ max						D=
									QL	NS	N SV	DT	DG	DT+DQ
	Q	С	Q/C	g/c	NQ1	NQ2	NQ		(m)	stop/smp	smp/jam	det/smp	det/smp	det/smp
U	510,7	3849	0,133	0,012	0	9,43	9,433	9,433	62,89	1,27	648,13	0	3,588	3,588
S	423,8	3194	0,133	0,002	0	7,90	7,901	7,901	26,34	1,28	542,84	0	4,990	4,990
В	99,8	752	0,133	0,019	0	1,83	1,832	1,832	8,14	1,26	125,85	0	4,587	4,587
									32,45425					4,38

Dari tabel di atas dapat diketahui bahwa panjang antrian pada ruas tersebut rata rata sepanjang 32 meter dan memiliki tundaan sebesar 6 detik/smp

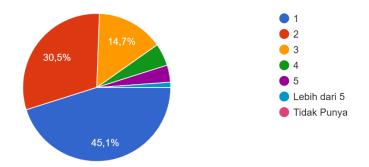
5.2 KARAKTERISTIK RESPONDEN DALAM BERSEPEDA

5.2.1 Penentuan Sample Responden

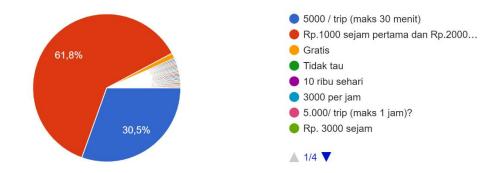
Untuk mengetahui karakteristik dan fitur layanan yang akan diterapkan di kemudian hari untuk pesepeda, diperlukannya suatu data responden berupa wawancara guna melihat atau mengetahui seberapa seringnya masyarakat Kabupaten Grobogan dalam bersepeda dan mengetahui antusias masyarakat terhadap *Bike Sharing System*.


Tahapan awal untuk mengetahui karakteristik dan fitur layanan yang pesepeda inginkan adalah dengan survei wawancara. Jumlah responden atau sample yang digunakan untuk mengetahui pendapat masyarakat dengan metode atau menggunakan rumus *Slovin*.

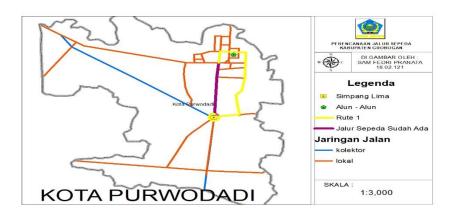
Dalam perhitungan jumlah sample menggunakan rumus *Slovin,* digunakan tingkat kesalahan sebesar 10% yang berarti data tersebut dapat mewakili populasi secara keseluruhan. Populasi responden berdasarkan kecamatan di daerah itu yaitu 141.405 jiwa yang merupakan penduduk kecamatan Purwodadi. Maka jumlah sample dapat di tentukan sebagai berikut:


$$n = \frac{141405}{1 + (141405x(0,1^2))}$$

= 100 Sample


5.2.2 Karakteristik Responden

Setelah dilakukannya perhitungan jumlah sample responden yang di butuhkan, maka hasilnya adalah rata rata responden yaitu pelajar dengan jumlah 94%, 3,6% Pegawai Negri Sipil, 1,4% Karyawan dan 1,4% lainnya. Berdasarkan *Stated Preference* yaitu suatu metode yang berfungsi untuk mengetahui apa pendapat seseorang tentang sesuatu yang ditanyakan. Hasil dari jawaban responden tersebut akan dijadikan referensi oleh peneliti. Berdasarkan hasil *Stated Preference* Mayoritas warga setempat ketika bersepeda mampu menempuh jarak sekitar 700 m- 1 km. Untuk bersepeda, kegiatan yang sering dilakukan olahraga, kemudian lainnya yang berupa reksreasi dan untuk sarana sekolah atau bekerja.


Untuk kepemilikan sepeda, responden 45% memiliki sepeda berjumlah satu unit dan 30% responden memiliki 2 unit sepeda kemudian 18% responden memiliki 5 unit sepeda. Untuk fasilita *bike sharing system,* 65% responden belum mengetahui hal itu dan 35% responden mengetahui hal tersebut. Untuk fasilitas penyewaan sepeda, menurut hasil angket secara wawancara rata rata responden menyetujui apabila adanya fasilitas penyewaan sepeda yaitu dengan 63% suara. Dan 32% tidak menyetujui.

Untuk biaya penyewaan, menurut hasil wawancara secara tertulis rata rata responden memilih biaya penyewaan berkelipatan perjam yaitu Rp 1000 sejam pertama dan dua jam berikut nya Rp.2000.

5.3 Usulan Rencana Jalur Sepeda

5.3.1 Rute 1 (Satu)

Gambar V. 1 Peta Rencana Rute 1

Pada rencana rute 1, ruas jalan yang dilalui adalah MT. Haryono – Jl. Suhada – Jl. Bayangkara – Jl. Hayam Wuruk 1 – Jl.Hayam Wuruk 2 – Jl. Dr. Sutomo, dengan total panjang rute sebesar 3,31 Km.

1. Inventarisasi Ruas Jalan Rute 1 (Satu)

Sebelum menentukan rencana rute satu jalur sepeda, hal pertama yang dilakukan adalah melakukan inventarisasi ruas jalan yang mungkin akan dilalui sebagai jalur sepeda. Data terinci dapat di perlihatkan dalam **Tabel V.9**:

Tabel V. 9 Inventarisasi Ruas Jalan Rute 1

	Liı	nk		Fungsi	Panjang Ruas	Lebar Jalan						
No	Awal	Akhir	Nama Jalan	Jalan	Yang Digunakan(Km)	Efektif						
	111	112	JI NAT I I	1 -11		7						
1	111	113	Jl. MT. Haryono	Lokal	0,33	7						
2	113	114	Jl. Suhada	Lokal	0,15	9						
3	114	109	Jl. Bayangkara	Lokal	1,28	8						
4	106	107	Jl. Hayam Wuruk I	Lokal	0,6	8						
5	107	109	Jl. Hayam Wuruk II	Lokal	0,52	8						
6	102	106	Jl. Dr. Sutomo	Lokal	0,43	8						
	TOTAL PANJANG RUTE											

Dari data inventarisasi ruas jalan pada **Tabel V.9** diatas, kemudian dilakukan tahapan analisis yang terkait dengan penentuan rencana jalur sepeda pada ruas jalan yang dilalui rencana rute satu yaitu sebagai berikut.

2. Kinerja Ruas Jalan dan Tingkat Pelayanan Rencana Rute 1 (Satu)

Tabel V. 10 Kinerja Ruas Jalan Rute 1

No	Nama Jalan	Panjang Ruas (m)	Kapasitas Jalan (C)	Volume (smp/jam)	V/C Ratio	KECEPATAN (KM/JAM)	KEPADATAN (smp/Km)	Tingkat Pelayanan
1	Jl. Suhada	150	3335,00	161,7	0,048	31,40	5	Α
2	Jl. Dr. Sutomo	430	3140,70	574,5	0,183	35,55	16	Α
3	Jl. MT. Haryono	330	2726,00	418,1	0,153	33,21	13	В
4	Jl. Hayam Wuruk I	600	3457,08	1042,0	0,301	33,79	31	В
5	Jl. Hayam Wuruk II	520	3457,08	529,4	0,153	33,00	16	А
6	Jl. Bayangkara	1280	3457,08	944,4	0,273	46,52	20	Α
	_	35,58						

Dari data kinerja lalilintas dapat di ketahui tingkat pelayanan jalan berdasarkan hasil V/C rasio pada rute satu. Pada rute satu terdapat ruas jalan yang memiliki tingkat pelayanan A dan B. Pada tingkat pelayanan A mengindikasikan bahwa kondisi arus bebas pada ruas tersebut dengan kecepatan tinggi dan volume lalulintas rendah. Untuk tingkat pelayanan B mengartikan bahwa dalam kondisi lalu lintas dalam zona arus stabil dan pengendara memiliki kebebasan yang cukup dalam dalam memilih kecepatan. Kecepatan rata rata pada rute 1 adalah 35,58 km/jam dengan jarak tempuh 3,3 km. Dalam rute ini tata guna lahan jalan merupakan permukiman,

pertokoan dan kawasan pemerintahan. Untuk lebih rinci, perhitungan kinerja ruas jalan pada rute 1 dapat dilihat pada **Tabel V.2.**

3. Kinerja Simpang Yang Dilalui Pada Rencana Rute 1

Pada usulan rute 1, jumlah Simpang yang akan dilalui yaitu sebanyak 3 persimpangan. Simpang tersebut antara lain Simpang Kencana, Simpang MT Haryono dan Simpang alun alun. Berikut adalah kinerja simpang tersebut:

a. Simpang Kencana

Tabel V. 11 Kinerja Simpang Kencana Eksisting

Kode pendekat	Kapasitas (smp/jam)	Derajat kejenuhan	Panjang Antrian	Tundaan Rata rata
pendekat		- /-		D=
	С	Q/C		DT+DQ
				(det/smp)
U	5156	0,01	2,53	1,64
S	4888	0,15	32,08	2,45
Т	6999	0,02	3,41	2,45
В	328	0,84	17,79	2,44
	Total		13,95	2,24

Diatas adalah kondisi eksisting Simpang 4 Kencana. Simpang kencana memiliki drajat kejenuhan terbear yaitu pada pendekat dari arah barat yaitu jalan Ahmad Yani sebesar 0,84. Pada simpang ini, pendekat

yang akan dilalui pada rencana rute 1 yaitu pada kode pendekat selatan. Untuk perhitungan lebih rinci dalam dilihat pada **TABEL V.3** dan **Tabel V.4**

b. Simpang MT. Haryono

Tabel V. 12 Kinerja Simpang MT Haryono Eksisting

Kode	Kapasitas (smp/jam)	Derajat kejenuhan	Panjang Antrian	Tundaan Rata rata
pendekat	S.g /c			
				D=
	С	Q/C		DT+DQ
			QL (m)	(det/smp)
U	428	0,36	6,11	2,19
S	441	0,68	14,90	7,17
Т	413	0,22	3,61	2,41
В	421	0,64	13,03	6,14
	То	tal	9,41	4,4

Diatas merupakan kondisi eksisting simpang 4 jalan MT.Haryono. Dapat diketahui dari tabel diatas bahwa drajat kejenuhan terbesar terjadi pada kaki simpang tipe pendekat dari arah selatan yaitu di jalan MT.

Haryono dengan drajat kejenuhan sebesar 0,6. Untuk perhitungan lebih rinci dapat dilihat pada **TABEL V.5** dan **Tabel V.6.**

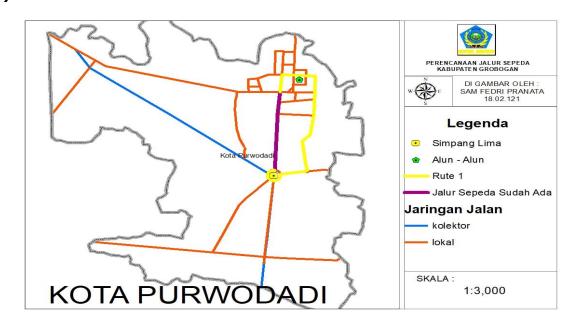
c. Simpang Alun alun

Tabel V. 13 Kinerja Simpang Alun alun Eksisting

Kode	Kapasitas (smp/jam)	Derajat kejenuhan	Panjang Antrian	Tundaan Rata rata
pendekat	S.g /c			
	С	Q/C	QL (m)	D= DT+DQ (det/smp)
U	3849	0,13	62,89	3,59
S	3194	0,13	26,34	4,99
В	752	0,13	8,14	4,59
	То	tal	32,45	4,3

Diatas merupakan kondisi eksisting Simpang Alun-alun. Pada Simpang Alun-alun memiliki drajat kejenuhan yang sama pada setiap pendekat yaitu 0,13. Untuk perhitungan lebih rinci dapat dilihat pada **TABEL V.7** dan **Tabel V.8**.

4. Kelebihan dan kekurangan rute pertama


a. Kelebihan

- 1) Jalur sepeda yang direncanakan dekat dengan tempat umum yaitu pertokoan, kawasan pendidikan dan lebih tepatnya kawasan ramai kegiatan.
- 2) Ruas jalan yang direncanakan masih terdapat bahu jalan yang dengan perkerasan tanah sehingga masih bisa dilakukannya pelebaran jalan.
- 3) Ruas jalan yang dilewati rata rata terdapat pepohonan sehingga pesepeda dapat terhindar dari panas.

b. Kekurangan

- 1) Terdapat beberapa persimpangan yang dilewati sehingga bisa terjadinya konflik kendaraan antara kendaraan bermotor dan pengendara sepeda.
- 2) Terlalu banyak persimpangan yang dilewati dan mengakibatkan banyaknya konflik dengan kendaraan bermotor.

5.3.2 Rute 2 (Dua)

Gambar V. 2 Peta Rencana Rute 2

Untuk perjalanan, rute ini berawal dari jalan S. Parman (Lokal) kemudian jalan Sudirman 1 (Lokal) diteruskan ke jalan jalan Bhayangkara (Lokal) selanjutnya melewati jalan Hayam Wuruk 1 (Lokal) dan di teruskan ke jalan Hayam Wuruk 2 (Lokal) dan diakhiri dengan jalan De. Sutomo (Lokal).

1. Inventarisasi Ruas Jalan Rute 2 (Dua)

Sebelum menentukan rencana rute dua jalur sepeda, hal pertama yang dilakukan adalah melakukan inventarisasi ruas jalan yang mungkin akan dilalui sebagai jalur sepeda. Pada usulan kedua, rute ini memiliki panjang sebesar 3,2 KM. Untuk data ter-rinci dapat dilihat pada tabel...

Tabel V. 14 Inventarisasi Ruas Jalan Rute 2

	Liı	nk		Fungsi	Panjang	Lebar Jalan	
No	Awal	Akhir	Nama Jalan	Jalan	Ruas	Efektif	
					(Km)		
1	111	112	Jl. S Parman	Lokal	0,20	9	
2	112	114	Jl. Sudirman I	Lokal	0,18	7	
3	106	107	Jl. Hayam Wuruk I	Lokal	0,60	8	
4			Jl. Hayam Wuruk	Lokal	0,52	8	
'	107	109	II	LORGI	0,32		
5	114	109	Jl. Bayangkara	Lokal	1,28	8	
6	102	106	Jl. Dr. Sutomo	Lokal	0,43	8	
	TOTAL PANJANG						

Dari data inventarisasi ruas jalan pada Tabel.....diatas, kemudian dilakukan tahapan analisis yang terkait dengan penentuan rencana jalur sepeda pada ruas jalan yang dilalui rencana rute dua yaitu sebagai berikut.

2. Kinerja Ruas Jalan dan Tingkat Pelayanan Rencana Rute 2 (Dua)

Tabel V. 15 Kinerja Ruas Jalan Rencana Rute 2 Eksisting

No	Nama Jalan	Panjang Ruas (m)	Kapasitas Jalan (C)	Volume (smp/jam)	V/C Ratio	KECEPATAN (KM/JAM)	KEPADATAN (smp/Km)	Tingkat Pelayanan
1	Jl. S Parman	200	2321,16	617,4	0,185	33,53	20	Α
2	Jl. Sudirman I	180	2937,00	265,8	0,090	30,34	9	Α
3	Jl. Bayangkara	1280	3457,08	944,4	0,273	46,52	20	В
4	Jl. Hayam Wuruk I	600	3457,08	1042,0	0,301	33,53	31	В
5	Jl. Hayam Wuruk II	520	3457,08	529,4	0,153	33	16	А
6	Jl. Dr. Sutomo	430	3140,70	574,5	0,183	35,55	16	Α

Dari data kinerja lalilintas dapat di ketahui tingkat pelayanan jalan berdasarkan hasil V/C rasio pada rute dua. Pada rute dua terdapat ruas jalan yang memiliki tingkat pelayanan A dan B. Pada tingkat pelayanan A mengindikasikan bahwa kondisi arus bebas pada ruas tersebut dengan kecepatan tinggi dan volume lalulintas rendah. Untuk tingkat pelayanan B mengartikan bahwa dalam kondisi lalu lintas dalam zona arus stabil dan pengendara memiliki kebebasan yang cukup dalam dalam memilih kecepatan. Kecepatan rata rata pada rute 1 adalah 35,4 Km/jam dengan jarak tempuh 3,21 Km. Dalam rute ini tata guna lahan jalan merupakan permukiman, pertokoan dan kawasan pemerintahan. Dalam rute ini tata guna lahan jalan merupakan permukiman, pertokoan dan kawasan pemerintahan. Untuk lebih rinci, perhitungan kinerja ruas jalan pada rute 1 dapat dilihat pada **Tabel V.2.**

3. Kinerja Simpang

Pada rute dua, jalur sepeda yang direncanakan melalui dua simpang.Berikutt adalah kinerja simpang tersebut:

a. Simpang Kencana

Tabel V. 16 Kinerja Simpang Kencana Eksisting

Kode pendekat	Kapasitas (smp/jam)	Derajat kejenuhan	Panjang Antrian	Tundaan Rata rata
	S.g/c			
	С	Q/C	QL (m)	

				D=
				DT+DQ
				(det/smp)
U	5156	0,01	2,53	1,64
S	4888	0,15	32,08	2,45
Т	6999	0,02	3,41	2,45
В	328	0,84	17,79	2,44
	То	tal	13,95	2,24

Diatas adalah kondisi eksisting simpang 4 kencana. Simpang kencana memiliki drajat kejenuhan terbear yaiti pada pendekat dari arah barat yaitu jalan Ahmad Yani sebesar 0,84. Pada simpang ini, rencana rute jalur sepeda yang direncanakan, pendekat yang dilalui yaitu pada kode pendekat timur. Untuk perhitungan lebih rinci dalam dilihat pada **TABEL V.3** dan **Tabel V.4**

b. Simpang Alun alun

Tabel V. 17 Kinerja Simpang Alun alun Eksisting

Kode	Kapasitas	Derajat	Panjang	Tundaan
pendekat	(smp/jam)	kejenuhan	Antrian	Rata rata
	S.g/c			

				D=
	С	Q/C		DT+DQ
			QL (m)	(det/smp)
U	3849	0,13	62,89	3,59
S	3194	0,13	26,34	4,99
В	752	0,13	8,14	4,59
	То	tal	32,45	4,4

Diatas merupakan kondisi eksisting simpang alun-alun. Pada simpang alun-alun memiliki drajat kejenuhan yang sama pada setiap pendekat yaitu 0,13. . Untuk perhitungan lebih rinci dapat dilihat pada **TABEL V.7** dan **Tabel V.8**.

4. Kelebihan dan kekurangan

a. Kelebihan

- 1) Rute keduaa memiliki panjang jalan yang lebih kecil di banding dengan rute pertama.
- 2) Dekat dengan berbagai fasilitas umum lainnya.
- 3) Jalur sepeda yang direncanakan dekat dengan tempat umum yaitu pertokoan, kawasan pendidikan dan lebih tepatnya kawasan ramai kegiatan.

b. Kelemahan

- 1) Terdapat beberapa persimpangan yang dilewati sehingga bisa terjadinya konflik kendaraan antara kendaraan bermotor dan pengendara sepeda.
- 2) Bahu jalan sudah diperkeras dengan aspal, sehingga tidak bisa nya dilakukan pelebaran jalan.

5.4 PERUBAHAN KONDISI KINERJA JALAN RENCANA

1. Rute Pertama

a. Kinerja Ruas

Untuk menentukan kinerja ruas jalan dibutuhkan keadaan inventarisasi ruas jalan tersebut setelah adanya perubahan pada ruas jalan tersebut. Berikut adalah perubahan inventarisasi ruass jalan pada rute tersebut :

Tabel V. 18 Perubahan Inventarisasi Ruas Jalan Rencana Rute 1

Nama Jalan	Fungsi Jalan	Status Jalan	Panjang Ruas (m)	Tipe	Lebar Jalan Efektif (m)	Lebar per Jalur (m)	Lebar Bahu (m)	Median (m)	Kelas Hambatan Samping
Jl. MT. Haryono	Lokal	Kota	330	2/2 UD	5,8	2,9	1	-	L
Jl. Suhada	Lokal	Kota	150	2/2 UD	7,8	3,9	1	-	М
Jl. Bayangkara	Lokal	Kota	1280	2/1 UD	6,80	6,80	0,5	-	L
Jl. Hayam Wuruk I	Lokal	Kota	600	2/1 UD	6,80	6,80	1,5	-	L
Jl. Hayam Wuruk II	Lokal	Kota	520	2/1 UD	6,80	6,80	1,5	-	L
Jl. Dr. Sutomo	Lokal	Kota	430	2/2 UD	6,8	3,4	1,5	-	М

Dari hasil inventarisasi ruas jalan ini akan dilakukannya perhitungan mengunakan faktor penyesuaian yang terdapat pada **Tabel III.1** hingga **Tabel III.5**. Berikut adalah hasil perhitungan :

Tabel V. 19 Perubahan Kinerja Ruas Jalan Rencana Rute 1

Nama Jalan	Panjang Ruas (m)	Tipe	Kapasitas Jalan (C)	Volume (smp/Jam)	V/C Ratio	KECEPATAN (KM)	KEPADATAN (smp/Km)
Jl. MT. Haryono	330	2/2 UD	2371,62	418,1	0,176	33,21	13
Jl. Suhada	150	2/2 UD	3041,52	161,7	0,053	31,40	5
Jl. Bayangkara	1280	2/1 UD	2816,88	944,4	0,335	46,52	20
Jl. Hayam Wuruk I	600	2/1 UD	2816,88	1042,0	0,370	33,79	31
Jl. Hayam Wuruk II	520	2/1 UD	2816,88	529,4	0,188	33,00	16
Jl. Dr. Sutomo	430	2/2 UD	2755,00	574,5	0,209	35,55	16

Diatas merupakan hasil perhitungan suatu kinerja ruas jalan setelah adanya jalur sepeda. Hal tersebut dilakukan karena , pada ruas tersebut mengalami pengurangan lebar jalan yang mengakibatkan penurunan terhadap kapasitas ruas tersebut.

b. Kinerja Simpang

Berikut adalah perhitungan suatu kinerja simpang yang akan dilewati nantinya apabila rute 1 dijadikan sebuah jalur sepeda.

Tabel V. 20 Perubahan Kinerja Simpang Yang di Lalui Rencana Rute 1

Nama Simpa ng	Kode pende kat	Leba r efek tif (m)			,	Arus jenuh					Kapasit				
					Fa	ktor-faktor	koreks	Nilai di sesuai	Arus Lalulint as	Rasio Arus	Wa ktu Hij	as (smp/ja m)	Derajat kejenuh		
			Nilai dasar (smp/j am hijau)		Semua Tipe	e pendekat									
				Ukur an Kota	Hambat an Sampin	Kelandai an	Park ir	Belok Kanan	Belok Kiri	kan (smp/j am hijau)	(smp/ja m)	FR	au (de tik)	S.g/c	an
				.	g		_	5 507			Q	Q/S	g	С	Q/C
			S0	Fcs	Fsf	Fg	Fp	FRT	FLT	S			(01		
	(1)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(21	(22)	(23)
	U	2,80	1680	1,00	0,94	1,00	1,00	17,26	0,94	25630	45	0,002	14	4124	0,01
Kenca na	S	4,50	2700	1,00	0,92	1,00	1,00	8,49	0,92	19328	742	0,038	22	4888	0.15
	Т	6,00	3600	1,00	0,94	1,00	1,00	10,00	1,00	33827	105	0,003	18	6999	0,02
	В	3,00	1800	1,00	0,94	1,00	1,00	1,00	0,94	1583	276	0,174	18	328	0,84

MT. Haryo no	U	3,50	2100	1,00	0,94	1,00	1,00	1,16	0,98	2248	155	0,07	12	428	0,36
	S	2,30	1380	1,00	0,94	1,00	1,00	1,02	0,99	1305	298	0,23	14	290	1,03
	Т	3,50	1996,4	1,00	0,95	1,00	1,00	1,02	0,96	1861	92	0,05	14	413	0,22
	В	3,50	2189,2	1,00	0,95	1,00	1,00	1,03	0,89	1895	271	0,14	14	421	<mark>0,64</mark>
Alun alun	U	3,00	1800	1,00	0,89	1,00	1,00	2,82	0,85	3849	511	0,13	45	3849	0,13
	S	6,00	3600	1,00	0,94	1,00	1,00	8,29	0,99	27914	424	0,02	5	3194	0,13
	В	3,30	1980	1,00	0,94	1,00	1,00	1,00	0,95	1774	100	0,06	19	752	0,13

Diatas merupakan perhitungan suatu kapasitas dan drajat kejenuhan suatu simpang. Untuk faktor penyesuaian dapat dilihat pada **Tabel III.11.** Berikut adalah perhitungan suatu antrian dan tundaan simpang yang akan dilewati nantinya oleh rute rencana jalur sepeda rute 1.

Tabel V. 21 Perubahan Tundaan Simpang Yang Dilalui Rencana Rute ${\bf 1}$

Nama Simpang	Kode Pendekat	Arus Lalulintas smp/jam			Rasio Hijau GR	Jumlah kendaraan antri (smp)					Jumlah	Tundaan			
				Drajat						Panjang	Rasio	Kendaraan	Tundaan	Tundaan	Tundaan
			Kapasitas	Kejenuhan				Total NQ1 + NQ2		Antrian QL	Kendaraan	Terhenti	lalulintas	Geometrik	Rata
			(smp/jam)	DS					NQ -			rementi	rata-rata	rata rata	rata
									max						D=
									IIIdX		NS	N SV	DT	DG	DT+DQ
		Q	С	Q/C	g/c	NQ1	NQ2	NQ		(m)	stop/smp	smp/jam	det/smp	det/smp	det/smp
Kencana	U	45,4	4124,4	0,0	0,2	0,0	0,4	0,4	0,4	2,66	0,306	14	0	1,536	1,5
	S	742,4	4887,6	0,2	0,3	0,0	5,6	5,6	5,6	25,03	0,283	210	0	2,130	2,1
	T	105,2	6998,7	0,0	0,2	0,0	0,8	0,8	0,8	2,72	0,289	30	0	2,157	2,2
	В	276,0	327,5	0,8	0,2	0,0	2,6	2,6	2,6	17,26	0,349	96	0	2,397	2,4
		Total													2,1

	U	155,0	428,2	0,4	0,2	0,0	1,1	1,1	1,1	6,06	0,352	55	0	2,2	2,18
N 4+	S	298,0	290,0	1,0	0,2	11,0	2,4	13,3	13,3	116,03	2,303	686	136,3	5	141,31
Mt	T	92,4	413,5	0,2	0,2	0,0	0,6	0,6	0,6	3,40	0,331	31	0	2,3	2,32
Haryono	В	270,9	421,2	0,6	0,2	0,4	1,9	2,3	2,3	13,34	0,443	120	3,4	2,8	6,19
				To	tal					34,71					38,00
	U	510,7	3849,03	0,13	0,01	0	9,62	9,62	9,62	64,11	1,37	699,96	0	3,44	3,44
Alun	S	423,8	3194,08	0,13	0,00	0	8,05	8,05	8,05	26,83	1,38	585,94	0	5,34	5,34
alun	В	99,8	752,17	0,13	0,03	0	1,86	1,86	1,86	11,25	1,35	135,16	0	4,80	4,80
				To	tal				·	34,1					4,53

2. Rute Kedua

a. Kinerja Ruas

Untuk menentukan kinerja ruas jalan dibutuhkan keadaan inventarisasi ruas jalan tersebut setelah adanya perubahan pada ruas jalan tersebut. Berikut adalah perubahan inventarisasi ruass jalan pada rute tersebut :

Tabel V. 22Perubahan Inventarisasi Ruas Jalan Rencana Rute 2

Nama Jalan	Fungsi Jalan	Status Jalan	Panjang Ruas (m)	Tipe	Lebar Jalur/Lajur Efektif (m)	Lebar per Jalur (m)	Lebar Bahu (m)	Median (m)	Kelas Hambatan Samping
------------	-----------------	-----------------	---------------------	------	--	---------------------------	----------------------	---------------	------------------------------

Jl. S Parman	Lokal	Kota	200	2/2 UD	3,9	3,9	0,5	-	L
Jl. Sudirman I	Lokal	Kota	180	2/1 UD	2,9	6,8	0,5	-	М
Jl. Bayangkara	Lokal	Kota	1280	2/1 UD	3,4	6,80	0,5	-	L
Jl. Hayam Wuruk I	Lokal	Kota	600	2/1 UD	3,4	6,80	1,5	-	L
Jl. Hayam Wuruk II	Lokal	Kota	520	2/1 UD	3,4	6,80	1,5	-	L
Jl. Dr. Sutomo	Lokal	Kota	430	2/2 UD	3,4	3,4	1,5	-	М

Dari hasil inventarisasi ruas jalan ini akan dilakukannya perhitungan mengunakan faktor penyesuaian yang terdapat pada **Tabel III.1** hingga **Tabel III.5.** Berikut adalah hasil perhitungan :

Tabel V. 23Perubahan Kinerja Ruas Jalan Rencana Rute 2

Nama Jalan	Panjang Ruas	Tipe	Kapasitas Jalan (C)	Volume	V/C Ratio	KECEPATAN (KM)	KEPADATAN (smp/Km)
	(m)		Salari (C)	(smp/Jam)	racio	(KIVI)	(SITIP/ICITI)
Jl. S Parman	200	2/2 UD	3335,00	617,4	0,001	33,53	20
Jl. Sudirman I	180	2/1 UD	2937	265,8	0,003	30,34	9
Jl. Bayangkara	1280	2/1 UD	3457,08	944,4	0,001	46,52	20

Jl. Hayam Wuruk I	600	2/1 UD	3457,08	1042,0	0,001	33,53	31
Jl. Hayam Wuruk II	520	2/1 UD	3457,08	529,4	0,002	33	16
Jl. Dr. Sutomo	430	2/2 UD	3140,7	574,5	0,002	35,55	16

b. Kinerja Simpang

Berikut adalah perhitungan suatu kinerja simpang yang akan dilewati nantinya apabila rute 2 dijadikan sebuah jalur sepeda.

Tabel V. 24 Perubahan Kinerja Simpang Yang Dilalui Rencana Rute 2

		Leba r efek tif (m)		Arus jenuh smp/jam hijau Faktor-faktor koreksi Nilai									Rasi	Wak	Kapasit	
Nama Simpa ng	Kode pende kat		Nilai dasar (smp/j	S		e pendekat		Hanya tipe Pende kat		sesuaik an (smp/j am	Lalulint as (smp/ja m)	Rasi o Aru s FR	o fase PR =Frc rit	tu Hija u (deti k)	as (smp/ja m)	Derajat kejenu han
lig	Kat	We	am hijau)	Ukur an Kota	Hamba tan Sampin g	Kelanda ian	Park ir	Belok Kanan	Bel ok Kiri	hijau)	Q	Q/S	IFR	مه	S.g /c C	Q/C
			S0	Fcs	Fsf	Fg	Fp	FRT	FLT	S						
	(1)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)

									0,9	32037,		0,0				
	U	3,5	2100	1	0,94	1	1	17,26	4	98	45,4	01	0,01	14	5156	0,01
									0,9	19328,		0,0				
Kenca	S	4,5	2700	1	0,92	1	1	8,49	2	4	742,4	38	0,18	22	4888	0,15
na										33827,		0,0				
	T	6	3600	1	0,94	1	1	10,00	1	13	105,2	03	0,01	18	6999	0,02
									0,9	1582,9		0,1				
	В	3	1800	1	0,94	1	1	1,00	4	27	276	74	0,80	18	328	0,84
									8,0	3849,0		0,1				
	U	3	1800	1	0,89	1	1	2,82	5	3	511	3	0,69	46	3849	0,13
Alun									0,9	22331,		0,0				
alun	S	4,8	2880	1	0,94	1	1	8,29	9	0	424	2	0,10	7	3194	0,13
									0,9	2419,5		0,0				
	В	4,5	2700	1	0,94	1	1	1	5	9	100	4	0,21	14	752	0,13

Diatas merupakan perhitungan suatu kapasitas dan drajat kejenuhan suatu simpang. Untuk faktor penyesuaian dapat dilihat pada **Tabel III.11.** Berikut adalah perhitungan suatu antrian dan tundaan simpang yang akan dilewati nantinya oleh rute rencana jalur sepeda rute 2.

Tabel V. 25 Perubahan Antrian Dan Tundaan Yang Akan Dilalui Rencana Rute 2

						Jur	nlah ke	ndaraa	n antri			Jumlah		Tundaan	
Nama		Arus		□ Draiat □ Rasio □ □ □ □	(smp)		Panjang	Rasio	Kendaraan	Tundaan	Tundaan	Tundaan		
Nama Simpang	Kode Pendekat	Lalulintas	Kapasitas (smp/jam)	Keienuhan	Hijau GR			Total NQ1		Antrian	Kendaraan	Terhenti	lalulintas rata-rata	Geometrik rata rata	Rata rata
		smp/jam		D3	GK			+	NQ max						
						NQ1	NQ2	NQ2		QL	NS	N SV	DT	DG	D= DT+DQ

		Q	С	Q/C	g/c			NQ		(m)	stop/smp	smp/jam	det/smp	det/smp	det/smp
	U	45	5156	0,01	0,003	0	0,44	0,44	0,44	2,53	0,36	16,46	0	1,64	1,64
	S	742	4888	0,15	0,005	0	7,22	7,22	7,22	32,08	0,36	268,80	0	2,45	2,45
Kencana	Т	105	6999	0,02	0,003	0	1,02	1,02	1,02	3,41	0,36	38,14	0	2,45	2,45
	В	276	328	0,84	0,055	0	2,67	2,67	2,67	17,79	0,36	99,41	0	2,44	2,44
										13,95					2,24
	U	511	3849	0,13	0,01	0	9,48	9,48	9,48	63,19	1,29	661,25	0	3,55	3,55
Alun	S	424	3194	0,13	0,00	0	7,94	7,94	7,94	33,06	1,31	553,55	0	5,09	5,09
alun	В	100	752	0,13	0,02	0	1,84	1,84	1,84	8,18	1,29	128,41	0	4,65	4,65
	·									34,81					4,43

5.5 PERBANDINGAN KINERJA JALAN EKSISTING DAN RENCANA

5.5.1 Kinerja Ruas Jalan

1. Rencana Rute 1 (Satu)

Pada pembuatan jalur sepeda akan menyebabkan pengurangan lebar ruas jalan yang akan dilaluinya dan menyebabkan kapasitas pada suatu ruas akan berkurang. Hal ini dapat menyebabkan perubahan pada V/C rasio. Untuk lebih rinci, berikut adalah perubahan kapasitas dan V/C rasio ruas jalan yang dilalui rute 1 (satu):

Tabel V. 26 Perbandingan Kinerja Ruas Jalan Rute 1

Rute	Nama ruas	Volume (smp/jam)	Kapasitas	Jalan (C)	V/C F	Ratio	KEPADATAN	(smp/Km)	KECEPATAN	l (KM/Jam)
			Sebelum	Sesudah	Sebelum	Sesudah	Sebelum	Setelah	Sebelum	Sesudah
	Jl. MT. Haryono	418,1	2726,00	2371,62	0,153	0,176	13	16	33,21	26,97
	Jl. Suhada	161,7	3335,00	3041,52	0,048	0,053	5	6	31,40	28,17
1	Jl. Bayangkara	944,4	3457,08	2816,88	0,273	0,335	20	24	46,52	39,36
_	Jl. Hayam Wuruk I	1042,0	3457,08	2816,88	0,301	0,370	31	37	33,79	28,32
	Jl. Hayam Wuruk II	529,4	3457,08	2816,88	0,153	0,188	16	19	33,00	27,62
	Jl. Dr. Sutomo	574,5	3140,70	2755,00	0,183	0,209	16	23	35,55	24,70
						0,225	17	20,741	35,58	29,19

Pada tabel di atas dapat dilihat bahwa terjadi perubahan pada kapasitas ruas jalan dan perubahan V/C rasio pada setiap ruas jalan yang akan dilalu pada rencana rute 1 (satu). Hal ini mengakibatkan perubahan pada tingkat pelayanan suaturuas jalan. Untuk perubahan tingkat pelayanan ruas jalan secara rinci dapat dilihat pada tabel dibawah ini

Tabel V. 27 Perbandingan Tingkat Pelayanan Ruas Jalan Rute Satu

Rute	Nama ruas	Tingkat Pelayanan Sebelum	Tingkat Pelayanan Sesudah
	Jl. Suhada	Α	Α
	Jl. Dr. Sutomo	Α	В
1	Jl. Hayam Wuruk I	В	В
1	Jl. Hayam Wuruk II	Α	Α
	Jl. Bayangkara	В	В
	Jl. MT. Haryono	Α	Α

Pada rencana rute 1 terjadi perubahan pada tingkat pelayanan ruas jalan JL. Dr Sutomo yang mulanya tingkat pelayanan A menjadi B. Perubahan ini tidak berubah jauh dan masih layak digunakan.

2. Rencana Rute 2 (Dua)

Pada pembuatan jalur sepeda akan menyebabkan pengurangan lebar ruas jalan yang akan dilaluinya dan menyebabkan kapasitas pada suatu ruas akan berkurang. Hal ini dapat menyebabkan perubahan pada V/C rasio. Untuk lebih rinci, berikut adalah perubahan kapasitas dan V/C rasio ruas jalan yang dilalui rute 2 (Dua):

Tabel V. 28 Perubandingan Kinerja Ruas Jalan Rute 2

Rute	Nama ruas	Volume (smp/jam)	Kapasitas	Jalan (C)	V/C F	Ratio	KEPADATAN	(smp/Km)	KECEPATAN	N (KM/Jam)
			Sebelum	Sesudah	Sebelum	Sesudah	Sebelum	Setelah	Sebelum	Sesudah
	Jl. S Parman	617,4	3335,00	3041,52	0,185	0,203	20	21	33,53	20,62
	Jl. Sudirman I	265,8	2937,00	2467,08	0,090	0,108	9	13	30,34	38,47
2	Jl. Bayangkara	944,4	3457,08	2816,88	0,273	0,335	20	25	46,52	28,09
	Jl. Hayam Wuruk I	1042,0	3457,08	2816,88	0,301	0,370	31	37	33,53	27,62
	Jl. Hayam Wuruk II	529,4	3457,08	2816,88	0,153	0,188	16	19	33	30,08
	Jl. Dr. Sutomo	574,5	3140,70	2755,00	0,183	0,209	16	19	35,55	29,061
						0,235	19	22,289	35,41167	28,98992

Pada tabel di atas dapat dilihat bahwa terjadi perubahan pada kapasitas ruas jalan dan perubahan V/C rasio pada setiap ruas jalan yang akan dilalu pada rencana rute 1 (satu). Hal ini mengakibatkan perubahan pada tingkat pelayanan suaturuas jalan. Untuk perubahan tingkat pelayanan ruas jalan secara rinci dapat dilihat pada tabel dibawah ini:

Tabel V. 29 Perbandingan Tingkat Pelayanan Ruas Jalan Rencana Rute 2

Rute	Nama ruas		
------	-----------	--	--

		Tingkat	Tingkat
		Pelayanan	Pelayanan
		Sebelum	Sesudah
	Jl. S Parman	Α	В
	Jl. Hayam Wuruk I	В	В
2	Jl. Hayam Wuruk II	Α	А
	Jl. Bayangkara	В	В
	Jl. Sudirman I	Α	Α
	Jl. Dr. Sutomo	Α	Α

Pada rencana rute 2 terjadi perubahan kinerja ruas jalan yaitu pada ruas JL. S Parman yang mula nya tingkat pelayanan A menjadi B. Perubahan ini tidak berubah jauh dan masih layak digunakan

5.5.2 Kinerja Simpang

1. Rute 1 (Satu)

Pada pembuatan jalur sepeda akan menyebabkan pengurangan lebar ruas jalan yang akan dilaluinya dan menyebabkan kapasitas pada suatu simpang akan berkurang. Hal ini dapat menyebabkan perubahan pada Drajat Kejenuhan suatu simpang. Untuk lebih rinci, berikut adalah perubahan kapasitas dan Drajat Kejenuhan suatu simpang yang dilalui Rute 1 (Satu)

Tabel V. 30 Perbandingan Kinerja Simpang Pada Rencana Rute 1

Nama Kode Simpang pendeka		Lebar efektif (m)	Lebar efektif (m)	Kapasitas (smp/jam)	Kapasitas (smp/jam)	Derajat kejenuhan	Derajat kejenuhan
		Sebelum Ada jalur sepeda	Sesudah Ada Jalur Sepeda	Sebelum Ada jalur sepeda	Sesudah Ada Jalur Sepeda	Sebelum Ada jalur sepeda	Sesudah Ada Jalur Sepeda
4 E	U	3,50	2,80	5156	4124	0,01	0,01
impang 4 Kencana	S	4,50	4,50	4888	4888	0,15	0,15
Simpang Kencana	Т	6,00	6,00	6999	6999	0,02	0,02
Sii 🛪	В	3,00	3,00	328	328	0,84	0,84
Σ.	U	3,50	3,50	428	428	0,36	0,36
Simpang 4 MT. Haryono	S	3,50	2,30	441	290	0,68	1,03
пра На	Т	3,50	3,50	413	413	0,22	0,22
Sin	В	3,50	3,50	421	421	0,64	0,64
3,4 In	U	3,00	3,00	3849	3849	0,13	0,13
ang -alu	S	6,00	6,00	3194	3194	0,13	0,13
Simpang 4 alun-alun	В	4,50	3,30	752	752	0,13	0,13

Pada tabel di atas dapat dilihat bahwa terjadi perubahan pada kapasitas dan perubahan Drajat Kejenuhan pada Salah satu kaki simpang yang akan dilalu pada rencana rute 1 (satu). Hal ini mengakibatkan perubahan pada tingkat pelayanan suatu simapang. Untuk perubahan tingkat pelayanan ruas jalan secara rinci dapat dilihat pada tabel dibawah ini

Tabel V. 31 Perbandingan Tingkat Pelayanan Simpang Rencana Rute 1

	Nama Simpang	Kode pendekat	Tingkat Pelayanan Sebelum	Tingkat Pelayanan Sesudah
	g a	U	Α	Α
	San	S	Α	Α
	Simpang Kencana	Т	Α	Α
Rute		В	D	D
1	J no	U	В	В
	ang ryo	S	С	F
	imp Ha	Т	В	В
	Simpang MT.Haryono	В	С	С
	g n	U	Α	Α
	oan alu	S	Α	Α
	Simpang alun alun	В	Α	Α
	s S			

Pada rute dsatu, tingkat pelayanan simpang berubah cukup signi fikan yaitu pada simpang MT. Haryono yang awal mulanya C menjadi F. Hal ini berarti arus pada simpang tersebut dipaksakan dan akan menumbulkan kemacetan dan akan menyebabkan antrian yang panjang dan hambatan yang besar.

Tabel V. 32 Perbandingan Tundaan Simpang

Tundaan	Nama simpang	Sebelum adanya jalur sepeda	Sesudah adanya jalur sepeda	Tingkat Pelayanan Sebelum	Tingkat Pelayanan Sesudah
Rute 1	Kencana	2,24	2,1	А	А

Mt.Haryono	4,47	38	A	D
Alun alun	4,38	4,53	А	А

Pada Tabel diatas dijelaskan bahwa apabila rute 1 dijadikan jalur sepeda makan akan terjadi peningkatan tundaan yang sangat signifikan. Dikarenakan pada simpang MT. Haryono yang awal nya memiliki tingkat pelayanan A menjadi D. Hal tersebut mengartikan bahwa rute 1 tidaak cocok untuk dibuatnya rute sepeda.

Tabel V. 33 Antrian Rute Rencana 1

Antrian	Nama Simpang	Sebelum adanya jalur sepeda	Sesudah adanya jalur sepeda
	Kencana	13,95	11,92
Rute 1	Mt.Haryono	9,41	34,71
	Alun alun 32,45		34,1
	Rata r	ata	26,91

2. Rute 2 (Dua)

Pada pembuatan jalur sepeda akan menyebabkan pengurangan lebar ruas jalan yang akan dilaluinya dan menyebabkan kapasitas pada suatu simpang akan berkurang. Hal ini dapat menyebabkan perubahan pada Drajat Kejenuhan suatu simpang. Untuk lebih rinci, berikut adalah perubahan kapasitas dan Drajat Kejenuhan suatu simpang yang dilalui Rute 2 (Dua).

Tabel V. 34 Perbandingan Kinerja Simpang Pada Rencana Rute 2

Nama	Kode	Lebar efektif (m)	Lebar efektif (m)	Kapasitas (smp/jam)	Kapasitas (smp/jam)	Derajat kejenuhan	Derajat kejenuhan
Simpang pende	pendekat	Sebelum Ada jalur sepeda	Sesudah Ada Jalur Sepeda	Sebelum Ada jalur sepeda	Sesudah Ada Jalur Sepeda	Sebelum Ada jalur sepeda	Sesudah Ada Jalur Sepeda
4 ~	U	3,50	3,50	5156	5156	0,01	0,01
	S	4,50	4,50	4888	4888	0,15	0,15
Simpang ' Kencana	Т	6,00	6,00	6999	6999	0,02	0,02
Sir A	В	3,00	3,00	328	328	0,84	0,84
lg 4 Iun	U	3,00	3,00	3849	3849	0,13	0,13
Simpang 4 alun-alun	S	6,00	4,80	3194	3194	0,13	0,13
Sir	В	4,50	4,50	752	752	0,13	0,13

Pada tabel di atas dapat dilihat bahwa terjadi perubahan pada kapasitas dan perubahan Drajat Kejenuhan pada Salah satu kaki simpang yang akan dilalu pada rencana Rute 2 (Dua). Hal ini mengakibatkan perubahan pada tingkat pelayanan suatu simapang. Untuk perubahan tingkat pelayanan ruas jalan secara rinci dapat dilihat pada tabel dibawah ini

Tabel V. 35 Perbandingan Tingkat Pelayanan Simpang Pada Rencana Rute 2

	Nama Simpang	Kode pendekat	Tingkat Pelayanan Sebelum	Tingkat Pelayanan Sesudah
	a	U	Α	Α
Rute 2	oan can	S	Α	Α
	Simpang Kencana	Т	Α	Α
		В	D	D
	D L	U	Α	Α
	alu	S	Α	Α
	Simpang alun alun	В	Α	Α
	S al			

Pada rute dua, tingkat pelayanan tidak ada yang berubah secara signifikan. Hal ini mengindikasikan bahwa jalur sepeda pada simpang di rencana rute dua tidak terlalu mempengaruhi terhadap kinerja simpang. Begitu pun pada tundaan pada simpang. Untuk lebih rinci dapat dilihat pada

Tabel V. 36Perbandingan Tundaan Pada Rencana Rute 2

Tundaan	Nama simpang	Sebelum adanya jalur sepeda	Sesudah adanya jalur sepeda	Tingkat Pelayanan Sebelum	Tingkat Pelayanan Sesudah
Duto 2	Kencana	2,24	2,24	А	A
Rute 2	Alun alun	4,38	4,43	А	A

Tabel diatas menjelaskan bahwa Simpang Kencana dan Simpang Alun alun tidak terpengaruh terhadap pembangunan jalur sepeda haltersebut dapat dilihat dari tundaan pada masing masing simpang tersebut yang tingkat pelayanannya relatif tidak berubah.

Tabel V. 37 Antrian RuteRencana 2

Antrian	Nama Simpang	Sebelum adanya jalur sepeda	Sesudah adanya jalur sepeda
Buto 2	Kencana	13,95	13,95
Rute 2	Alun alun	32,45	34,81
		Rata rata	24,38

5.6 PERANGKINGAN RUTE JALUR SEPEDA

Dalam menentukan rute jalan yang akan digunakan dari dua usulan rute sebelumnya, digunakan indikator yang paling baik diberikan nilai 1. Rute usulan yang memiliki nilai paling sedikit merupakan rute dengan penilaian indikator terbaik.

Tabel V. 38 Perangkingan Usulan Rute

Rute	Antrian	Ranking	Kecepatan	Ranking	Tundaan Simpang	Ranking
1	26,91 m	2	29,19	2	A – D	2
2	24,38 m	1	29,06	1	A - A	1

Rute	Drajat Kejenuhan persimpangan	Ranking	Peningkatan V/C Ratio	Ranking	Total
1	1,03	2	17,790	1	9
2	0,84	1	18,480	2	6

Keterangan Indikator:

1. Antrian

Indikator ini menjelaskan bahwa semakin rendah antrian dapat di asumsikan semakin baik karena tidakadanya hambatan dalam melewati suatu persimpangan tersebut.

2. Kecepatan

Indikator ini menjelaskan bahwa kecepatan kendaraan bermotor pada rute tersebut. Indikator ini meninjau pada sisi keselamatan. Hal ini dikarenakan semakin rendah kecepatan pada suatu ruaas maka semakin kecil juga tingkat fatalitas yang akan terjadi.

3. Tundaan

Merupakan indikator yang menjelaskan bahwa apabila tundaan semakin tinggi maka waktu tempuh yang dibutuhkan bertambah.

6. Drajat Kejenuhan Simpang

Merupakan indikator yang menunjukan drajat kejenuhan persimpangan yang dilewati pada rute tersebut.

7. Rata-rata peningkatan V/C Ratio

Indikator ini merupakan nilai yang di dapat dari kinerja V/C ratio sebelum lebar jalan dikurangi untuk jalur sepeda dan sesudah lebar jalan dikurangi jalur sepeda.

5.6.1 KINERJA RUAS JALAN YANG DIGUNAKAN JALUR SEPEDA

Dari hasil prangkingan, usulan rute kedua mendapatkan total rangking lebih sedikit hal ini dapat di simpulkan rute kedua lebih baik dari pada rute pertama. Berikut adalah kapasitas rute atau ruas jalan yang dilewati jarur sepeda sebelum dan sesudah adanya jalur sepeda.

Tabel V. 39 Perubahan Inventarisasi Rute Terpilih

Nama Jalan	Fungsi Jalan	Panjang Ruas (m)	Lebar Jalan Sebelum di bangun jalur sepeda (m)	Lebar Jalan Sesudah dibangun jalur sepeda (m)
Jl. S Parman	Lokal	200	9	7,8
Jl. Sudirman I	Lokal	180	7	5,8
Jl. Hayam Wuruk I	Lokal	600	8	6,8

Jl. Hayam Wuruk II	Lokal	520	8	6,8
Jl. Bayangkara	Lokal	1280	8	6,8
Jl. Dr. Sutomo	Lokal	430	8	6,8

Pada tabel di atas dapat di simpulkan bahwa kondisi ruas jalan setelah dan sebelum di terapkannya jalur sepeda pada ruas jalan tersebut. Pada tabel di atas dapat dilihat bahwa terjadi pengurangan lebar ruas jalan pada setiap ruas jalan. Setelah diterapkannya jalur sepeda, ruas jalan tersebut tetap memiliki lebar jalan yang relatif luas. Dikarenakannya pengurangan lebar ruas jalan, hal itu dapat mengakibatkan penurunan pada kapasitas ruas jalan tersebut. Untuk lebih rinci mengenai perubahan kapasitas dapat dilihat pada tabel dibawah ini.

Tabel V. 40 Perubahan Kpasitas Jalan Rute Terpilih

Rute	Nama ruas	V/C Ratio		KEPADATA	AN (smp/Km)	KECEPATAN (KM/jam)	
		Sebelum	Sesudah	Sebelum	Setelah	Sebelum	Sesudah
	Jl. S Parman	0,185	0,203	20	21	33,53	20,62
	Jl. Sudirman I	0,090	0,108	9	13	30,34	38,47
	Jl. Bayangkara	0,273	0,335	20	25	46,52	28,09
2	Jl. Hayam Wuruk I	0,301	0,370	31	37	33,53	27,62
	Jl. Hayam Wuruk II	0,153	0,188	16	19	33	30,08
	Jl. Dr. Sutomo	0,183	0,209	16	19	35,55	29,061
					19 22,289	35,41167	28,98992

Tabel V. 41 Perubahan V/C Ratio Rute Terpilih

NAMA RUAS	Fungsi Jalan	Panjang	V/C	Volume Lalulintas	
	. 3	Ruas (m)	sebelum	sesudah	(smp/jam)
Jl. S Parman	Lokal	200	0,19	0,20	617,4

Jl. Sudirman I	Lokal	180	0,09	0,11	265,8
Jl. Bayangkara	Lokal	600	0,27	0,34	944,4
Jl. Hayam Wuruk	Lokal	520			1042.0
I	Lokal	520	0,30	0,37	1042,0
Jl. Hayam Wuruk	Lokal	1280			529,4
II	LUKAI	1200	0,15	0,19	329,4
Jl. Dr. Sutomo	Lokal	430	0,18	0,21	574,5

Dari data di atas dapat dilihat bahwa kenaikan V/C ratio akibat pengurangan kapasitas yang diakibatkan berkurangnya lebar jalan efektif. Tabel diatas juga menjelaskan kinerja jalan setelah adanya Jalur Sepeda nantinya.

Tabel V. 42 Tingkat Pelayanan Rute Terpilih

NAMA RUAS	Fungsi Jalan	Panjan g Ruas (m)	Lebar Efektif Ruas Jalan	Lebar Jalur Sepeda	Tipe Jalan	VCR	Tingkat Pelayana n
Jl. S Parman	Lokal	0,2	7,8	1,2	2/2 UD	0,203	Α
Jl. Sudirman I	Lokal	0,18	6,8	1,2	2/1 UD	0,108	Α
Jl. Bayangkara	Lokal	0,6	6,8	1,2	2/1 UD	0,335	В
Jl. Hayam Wuruk I	Lokal	0,52	6,8	1,2	2/1 UD	0,370	В
Jl. Hayam Wuruk II	Lokal	1,28	6,8	1,2	2/1 UD	0,188	А
Jl. Dr. Sutomo	Lokal	0,43	6,8	1,2	2/2 UD	0,209	В

5.7 SISTEM OPERASIONAL *BIKE SHARING SYSTEM* DI KABUPATEN GROBOGAN

Bike Sharing System merupakan salah satu fasilitas bersepeda yang berupa armada sepeda yang terintegrasi yang dapat di gunakan untuk publik. Dalam penerapannya di Indonesia, *bike sharing system* sudah diterapkan di beberapa kota besar yaitu kota Bandong dan DKI Jakarta.

Kehadiran *bike sharing* diharapkan dapat menjadi sarana alternatif yang mengurangi penggunaan transportasi pribadi. Selain itu, penggunaan sepeda dapat mendororng peningkatan mobolitas, kesehatan, produktivitas dan kebahagiaan masyarakat.

Dalam penerapannya, sistem operasional *bike sharing system* dapat mengadaptasi dari sistem yang sudah diterapkan yaitu Boseh yang sudah ada di kota Bandung sejak tahun 2012. Pengguna *bike sharing* dapat menyewa sepeda dari satu stasiun dan dapat mengembalikannya distasiun lain dalam jaringan stasiun yang dibangun diarea layanan. Transaksi sewa menggunakan *contactless card* bagi pengguna dengan sistem *Near Field Communication* (NFC) yang berfungsi sebagai kartu keanggotaan untuk mengakses fasilitas *bike sharing system*.

Bike sharing system membutuhkan empat sistem utama agar dapat berfungsi yaitu :

1. Terminal system

Terminal system adalah salah satu perangkat yang berfungsi sebagai antarmuka antara pengguna dengan operator yang ingin melakukan transaksi. Sistem tersebut meliputi LCD sebagai layar, keypad sebagai penerima input dari pengguna, smart card reader untuk merekam dan membaca data transaksi, modem sebagai sarana komunikasi dengan server dan jalur komunikasi ke sistem docking. Selain fitur terssebut, sistem juga harus menjamin keamanan dengan menjaga kerahasiaan data pribadi pengguna, termasuk nama, tanggal dan waktu penggunaan, saldo, alamat dan data lain yang terdapat dalam kartu. Berikut adalah contoh tapilan Terminal system yang usdah diterapkan di Indonesia yaitu di kota Bandung.

Gambar V. 3 Terminal System

2. Docking

Docking adalah sistem yang terdiri dari beberapa dermaga. Dermaga merupakan tempat dimana sepeda diletakan. Sistem pada docking sudah mencakup sensor sepeda, smartlock dan dok tempat sepedda terkunci.

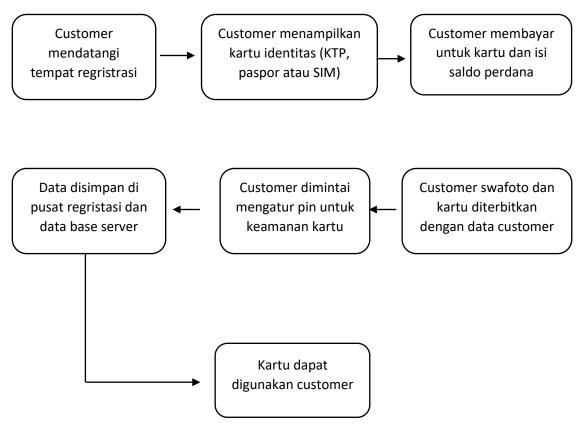
Gambar V. 4 Docking Otomatis

3. Card Management System (CMS)

Card management system merupakan perangkat yang mendukung operasional *bike sharing system*. Dimana terminal dan docking dihubungkan langsung oleh pengguna. CMS adalah perangkat yang digunakan oleh administator dan operator. Sangat penting untuk pengelolaan pengguna terutama karena menggunakan *smart card*.

4. Smart Card

Smart card digunakan untuk proses transaksi antara pengguna dan operator. Bike sharing system dapat menggunakan dua smart card yaitu contactless card dan contact card. Transaksi yang terjadi di terminal dan CMS akan tersalin pada kartu masing masing pengguna.

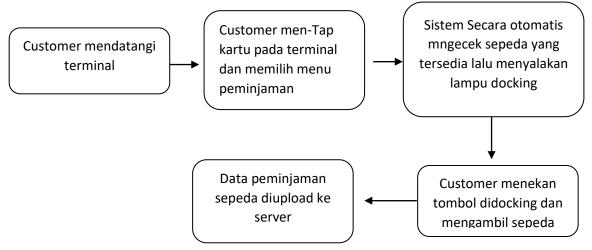


Gambar V. 5 Smart Card

V.7.1 TATA CARA KERJA SISTEM

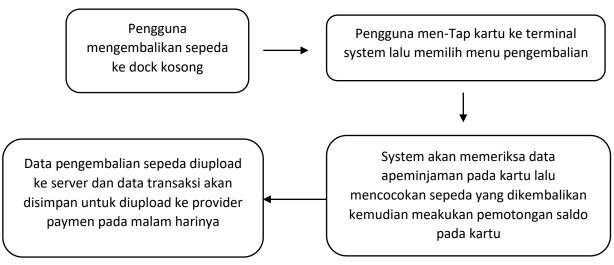
1. Pendaftaran

Pengguna harus menguncungi pusat stasiun untuk melakukan pendaftaran dengan menunjukan kartu identitas dan menyetorkan sejumlah uang yang nantinya akan dijadikan saldo. Setelah itu pengguna akan diberikan *smart card* yang dapat digunakan disetiap terminal *bike sharing*.



Gambar V. 6 Tata Cara Pendaftaran

2. Penyewaan Sepeda


130

Pengguna harus memilih nebu sewa sepeda di terminal setelah menempelkan kartu dan memasukan kata sandi aktif mereka sendiri. Sistem terminal akan secara otomatis mencari dan menentukan sepeda yang siap diakses. Layar monitor akan menampilkan nomor dok sepeda. Pengguna kemudian pergi ke dok yang ditentukan dan menekan tombol di dok untuk membuka kunci sepeda.

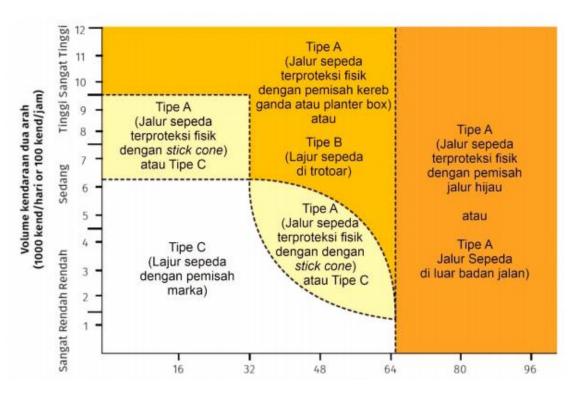
Gambar V. 7 Tata Cara Penyewaan Sepeda

Pengguna harus terlebih dahulu mengantar sepeda atau mengembalikan ke dok kosong. Selanjutnya pengguna keterminal. Dan memilih transaksi pengembalian sepeda. Setelah men-tap kartu pengguna harus memasukan kata sandi kartu mereka. Jika id sepeda terdaftar di kartu sesuai dengan sepeda didocking, transaksi pengembalian berhasil dan kartu diperbarui.

Gambar V. 8Tata Pengembalian Sepeda

5.8 PRASARANA PENUNJANG JALUR SEPEDA

5.8.1 Pemilihan Fasilitas Jalur Sepeda


Dalam penentuan tipe lajur atau jalur sepeda, menurut surat edaran Kementerian Pekerjaan Umum dan Perumahan Rakyat (PUPR) No. 5 Tahun 2021 tentang perancangan fasilitas sepeda pemilihan lajur atau jalur sepeda dapat ditentukan berdasarkan tabel dibawah ini

	Jalan Raya	Jalan Sedang	Jalan Kecil
Arteri Primer	Α	Α	-
Kolektor Primer	Α	Α	-
Lokal Primer	С	С	С
Lingkungan Primer	С	С	С
Arteri Sekunder	A/B	A/B	A/B
Kolektor Sekunder	A/B/C	A/B/C	B/C
Lokal Sekunder	B/C	B/C	B/C
Lingkungan Sekunder	B/C	B/C	B/C

Keterangan:

- A = Tipe jalur sepeda terproteksi (di badan jalan atau di luar badan jalan)
- B = Tipe lajur sepeda di Trotoar
- C = Tipe lajur sepeda di badan jalan

Gambar V. 9 Penentuan Fasilitas Jalur Sepeda

Gambar V. 10 Penentuan Pengaman Jalur Sepeda

Dari gambar di atas dapat di simpulkan bahwa:

1. Kriteria Jalur Tipe A

Pada kriteria ini, ruas jalan yang diberikan jalur sepeda Tipe A dengan fasilitas jalur sepeda terproteksi yang letaknya dibadan jalan atau luar badan jalan harus berada pada jalan Arteri Primer, Arteri Skunder dan kolektor sekunder. Berikut adalah rincian menurut kecepatan dan volume jalan pada ruas jalan:

- a. Ruas Jalan dengan volume kendaraan antara 650 –
 950 kendaraan/jam dan pada kecepatan antara 0 32
 Km/jam jalur sepeda di fasilitasi dengan proteksi fisik dengan stick cone.
- b. Ruas Jalan dengan volume kendaraan antara 150 –
 650 Kendaraan/jam dan pada kecepatan antara 32 64 Km/jam jalur sepeda di fasilitasi dengan proteksi fisik dengan *stick cone*.

- c. Ruas Jalan dengan volume kendaraan antara 150 –
 1200 kendaraan/jam dan pada kecepatan antara 32 64 Km/jam jalur sepeda di fasilitasi dengan proteksi fisik dengan pemisah kereb ganda atau plenter box.
- d. Ruas Jalan dengan volume kendaraan antara 0 1200 kendaraan/jam dan pada kecepatan antara 64 96 Km/jam jalur sepeda di fasilitasi dengan proteksi fisik dengan pemisah jalur hijau atau jalur sepeda berada diluar badan jalan.

2. Kriteria jalur Tipe B

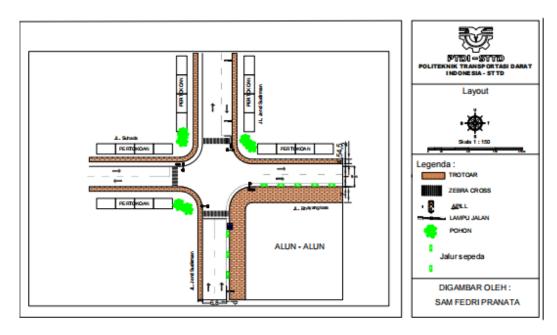
Pada kriteria ini, ruas jalan yang diberikan jalur sepeda Tipe B dengan fasilitas jalur sepeda berada pada trotoar dan harus berada pada jalan Kolektor Sekunder, Arteri Skunder, Lokal Sekunder dan Lingkungan Skunder. Berikut adalah rincian menurut kecepatan dan volume jalan pada ruas jalan:

a. Ruas Jalan dengan volume kendaraan antara 150 –
1200 kendaraan/jam dan pada kecepatan antara 32
- 64 Km/jam jalur sepeda berada di trotoar.

3. Kriteria jalur Tipe C

Pada kriteria ini, ruas jalan yang diberikan jalur sepeda Tipe C dengan fasilitas jalur sepeda berada pada Badan Jalnn dan harus berada pada jalan Lokal primer, Lingkungan primer, Kolektor Sekunder, Arteri Skunder, Lokal Sekunder dan Lingkungan Skunder. Berikut adalah rincian menurut kecepatan dan volume jalan pada ruas jalan:

- a. Ruas jalan dengan volume 0 650 kendaraan/jam dan dengan kecepatan antara 0- 64 Km/Jam jalur sepeda difasilitasi denganpemisah marka.
- b. Ruas Jalan dengan volume kendaraan antara 650 –
 950 kendaraan/jam dan pada kecepatan antara 0 32 Km/jam jalur sepeda di fasilitasi dengan proteksi fisik dengan *stick cone.*

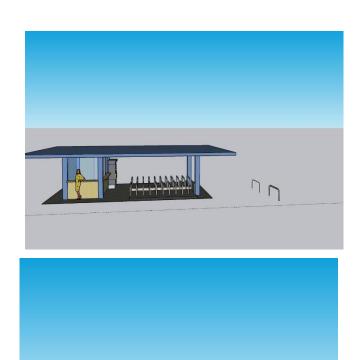

c. Ruas Jalan dengan volume kendaraan antara 150 –
650 Kendaraan/jam dan pada kecepatan antara 32 64 Km/jam jalur sepeda di fasilitasi dengan proteksi fisik dengan *stick cone.*

Berdasarkan hasil di atas berikut adalah fasilitas jalur sepeda yang akan diterapkan :

Tabel V. 43Rekomendasi Usulan Perlengkapan Jalan Untuk Jalur Sepeda

Rute	Nama Ruas Jalan	Tipe Jalan	Rekomendasi Tipe Lajur Sepeda	Keterangan
	Jl. S Parman	Lokal Sekunder	С	Dipisah dengan marka
	Jl. Sudirman I	Lokal Sekunder	С	Dipisah dengan marka
,	Jl. Bayangkara	Lokal Sekunder	С	Dipisah dengan marka
2	Jl. Hayam Wuruk I	Lokal Sekunder	С	Dipisah dengan marka
	Jl. Hayam Wuruk II	Lokal Sekunder	С	Dipisah dengan marka
	Jl. Dr. Sutomo	Lokal Sekunder	С	Dipisah dengan marka

Berikut adalah gambaran desain jalur sepeda dipisah dengan marka :



Gambar V. 11 Visualisasi Jalur Sepeda

5.8.2 Usulan Penempatan dan Desain Halte Penyewaan Sepeda

Dalam penentuan terminal sepeda akan dibagi kedalam dua jenis yaitu terminal utama dan terminal pengumpan. Perbedaannya adalah terminal utama akan disediakan petugas yang berfungsi untuk melakukan regristasi pengguna baru dan terminal pengumpan adalah terminal yang hanya menyediakan dok sepeda. Jumlah sepeda yang tersedia pada terminal tersebut juga berbeda kuantitasnya. Terminal utama memiliki jumlah sepeda lebih banyak dibanding terminal pengumpan. Dalam penempatan terminal sepeda belum ada aturan yang mengatur, namun terminal sepeda selalu diletakan di kantong penumpang angkutan umum atau di kawasan ramai hal ini demi keamanan dan meminimalisir pencurian sepeda.

Untuk itu terminal sepeda pada kabupaten Grobogan akan diletakan pada alun alun dan di wisata kuliner. Berikut adalah usulan desain terminal sepeda.

Gambar V. 12Visualisasi Terminal Sepeda

BAB VI

PENUTUP

6.1 Kesimpulan

- Perencanaan rute jalur sepeda dengan usulan rute Jalan S. Parman, Jalan Sudirman 1, Jalan Bayangkara, Jalan Hayam Wuruk 1, Jalan Hayam Wuruk 2 dan Jalan Dr. Sutomo.
- 2. Perencanaan rute jalur sepeda dengan analisa pemilihan rute didapat satu usulan terbaik yang melalui Jalan S. Parman, Jalan Sudirman 1, Jalan Bayangkara, Jalan Hayam Wuruk 1, Jalan Hayam Wuruk 2 dan Jalan Dr. Sutomo untuk kinerja ruas jalan tidak berubah secara signifikan dan masih layak digunakan.
- 3. Desain jalur sepeda yang diusulkan sesuai hasil analisa akan diletakan di badan jalan dan dipisah dengan marka.
- 4. Mengusulkan konsep rancangan *bike sharing system* mengunakan *smart card* dengan sistem penyewaan sepeda.

6.2 Saran

- Diperlukannya event yang mendukung digunakannya sepeda setiap minggu guna membudidayakan perilaku bersepeda kepada masyarakat.
- Diperlukannya sosialisasi akan pentingnya bersepeda dan sosialisasi mengenai penyewaan sepeda agar meningkatkan minat masyarakat akan bersepeda.
- Adanya penegakan hukum yang ketat dan teratur bagi pengendara kendaraan bermotor yang mengganggu akses dan aktifitas pesepeda di jalur sepeda.

4.