EVALUASI KINERJA LOKOMOTIF CC 201 DI DIVRE I SUMATERA UTARA

KERTAS KERJA WAJIB

Diajukan Oleh:

FAJRI HANIF

NOTAR: 19.03.030

POLITEKNIK TRANSPORTASI DARAT INDONESIA—STTD PROGRAM STUDI DIPLOMA III MANAJEMEN TRANSPORTASI PERKERETAAPIAN BEKASI 2022

EVALUASI KINERJA LOKOMOTIF CC 201 DI DIVRE I SUMATERA UTARA

KERTAS KERJA WAJIB

Diajukan Dalam Rangka Penyelesaian Program Studi Diploma III Manajemen Transportasi Perkeretaapian Guna Memperoleh Sebutan Ahli Madya

Diajukan Oleh:

FAJRI HANIF

NOTAR: 19.03.030

POLITEKNIK TRANSPORTASI DARAT INDONESIA—STTD PROGRAM STUDI DIPLOMA III MANAJEMEN TRANSPORTASI PERKERETAAPIAN BEKASI 2022

HALAMAN PERNYATAAN ORISINALITAS

Kertas Kerja Wajib (KKW) ini adalah hasil karya saya sendiri, dan semua sumber baik yang dikutip maupun dirujuk telah saya nyatakan benar.

Nama : FAJRI HANIF

Notar : 19.03.030

Tanda Tangan

Tanggal: 26 JULI 2022

HALAMAN PENGESAHAN KERTAS KERJA WAJIB

EVALUASI KINERJA LOKOMOTIF CC 201 DI DIVRE I SUMATERA UTARA

Yang Dipersiapkan dan Disusun Oleh:

FAJRI HANIF NOTAR: 19.03.030

Telah disetujui oleh:

PEMBIMBING

RIANTO RILI PRIHATMANTYO, S.T., M.Sc

Tanggal: 29 - Jul - 2022

PEMBIMBING

Ir. MUHARDSITO, MM

Tanggal: 29 - July - 2022

KERTAS KERJA WAJIB

EVALUASI KINERJA LOKOMOTIF CC 201 DI DIVRE I SUMATERA UTARA

Diajukan Untuk Memenuhi Persyaratan Kelulusan

Program Studi Diploma III Manajemen Transportasi Perkeretaapian

Oleh:

FAJRI HANIF

NOTAR: 19.03.030

TELAH DIPERTAHANKAN DI DEPAN DEWAN PENGUJI

PADA TANGGAL 03 AGUSTUS 2022

DAN DINYATAKAN TELAH LULUS DAN MEMENUHI SYARAT

PEMBIMBING

RIANTO RILI PRIHATMANTYO, S.T., M.Sc Tanggal. 19 141 2022

NIP. 198301292009121001

PEMBIMBING

Tanggal 29 July 2022

PROGRAM STUDI DIPLOMA III **MANAJEMEN TRANSPORTASI PERKERETAAPIAN**

POLITEKNIK TRANSPORTASI DARAT INDONESIA - STTD

BEKASI

2022

KERTAS KERJA WAJIB EVALUASI KINERJA LOKOMOTIF CC 201 DI DIVRE I SUMATERA UTARA

Yang dipersiapkan dan disusun oleh:

FAJRI HANIF

NOTAR: 19.03.030

TELAH DIPERTAHANKAN DI DEPAN DEWAN PENGUJI **PADA TANGGAL 03 AGUSTUS 2022** DAN DINYATAKAN TELAH LULUS DAN MEMENUHI SYARAT

DEWAN PENGUJI

PENGUJI

RIANTO RILI PRIHATMANTYO, S.T., M.Sc Ir. JULISON ARIFIN, P.Hd

NIP. 19830129 200912 1 001

PENGUJI

NIP. 19880101 200912 2 001

ENGUJI

PENGUJI

PRAWOTO, SH., M.Si

MENGETAHUI,

KETUA PROGRAM STUDI MANAJEMEN TRANSPORTAST PERKERETAAPIAN

Ir. BAMBANG DRAJAT, MM

NIP. 19581228 198903 1 002

HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI TUGAS AKHIR UNTUK KEEPENTINGAN AKADEMISI

Sebagai sivitas akademik Politeknik Transportasi Darat Indonesia -STTD saya yang bertanda tangan dibawah ini:

Nama

: FAJRI HANIF

Notar

: 19.03.030

Program Studi : D-III Manajemen Transportasi Perkeretaapian

Jenis Karya

: Tugas Akhir

Demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada Politeknik Transportasi Darat Indonesia-STTD. Hak Bebas Royalti Non Eksklusif (Non-exclusive Royalty-Free Right) atas karya ilmiah saya yang berjudul:

EVALUASI KINERJA LOKOMOTIF CC 201 DI DIVRE I SUMATERA UTARA

Beserta perangkat yang ada (jika diperlukan). Dengan Hak Bebas Royalti Non Eksklusif ini Politeknis Transportasi Darat Indonesia-STTD berhak menyimpan, mengalih media/formatkan, meneglola dalam bentuk pangkalan data (database), merawat, dan mempublikasikan Tugas Akhir saya selama tetap mencantumkan nama saya sebagai penulis/pencipta dan sebagai pemilik Hak Cipta. Demikian pernyataan ini saya buat dengan sebenanrnya.

Dibuat di

: Bekasi

Pada tanggal : 26 Juli 2022

Yang Menyatakan

(FAJRÌ HANIF)

KATA PENGANTAR

Alhamdulillah segala puji saya panjatkan kepada ALLAH SWT yang telah melimpahkan rahmat serta hidayah-Nya kepada kita semua, sehingga saya dapat menyelesaikan Kertas Kerja Wajib (KKW) dengan judul **EVALUASI KINERJA LOKOMOTIF CC 201 DI DIVRE I SUMATERA UTARA**. Kertas Kerja Wajib ini diajukan dalam rangka menyelesaikan Program Studi Diploma III Manajemen Transportasi Perkeretaapian Politeknik Transportasi Darat Indonesia-STTD.

Penulis mengucapkan terima kasih atas bimbingan, arahan, serta dukungan kepada pihak-pihak yang telah membantu dalam penyusunan Kertas Kerja Wajib ini kepada yang terhormat:

- 1. Bapak Ahmad Yani, A.TD, M.T selaku Direktur Politeknik Transportasi Darat Indonesia–STTD;
- 2. Bapak Ir. Bambang Drajat, MM selaku Ketua Program Studi Diploma III Manajemen Transportasi Perkeretaapian
- 3. Bapak Rianto Rili P, M.Sc dan Bapak Ir. Muhardjito, MM sebagai dosen pembimbing yang telah memberikan arahan dan bimbingan selama penyusunan Kertas Kerja Wajib (KKW) ini.
- 4. Dosen-dosen Program Studi Diploma III Manajemen Transportasi Perkeretaapian angkatan XLI, yang telah memberikan bimbingan selama pendidikan.
- 5. Staf depo lokomotif kisaran yang telah membantu dalam penyusunan Kertas Kerja Wajib ini.
- Orang tua tercinta, Bapak Jon Asmar dan Ibu Delma Efita, serta keluarga;
- 7. Rekan-rekan Manajemen Transportasi Perkeretaapian angkatan XLI;
- 8. Semua pihak yang telah membantu Menyusun Kertas Kerja Wajib (KKW) ini.

Penulis menyadari bahwa dalam penulisan Kertas Kerja Wajib ini sangat jauh dari kata sempurna dan masih banyak terdapat kekurangan karena berbagai keterbatasan. Oleh karena itu penulis mengharapkan kritik dan saran yang bersifat membangun. Semoga bermanfaat bagi semua pihak yang membutuhkannya.

Bekasi, 26 Juli 2022

Penulis

FAJRI HANIF

NOTAR: 19.03.030

DAFTAR ISI

KATA	A PENGANTAR	vii
DAFT	TAR ISI	ix
DAFT	TAR TABEL	xi
DAFT	Tar gambar	xii
BAB 1	I PENDAHULUAN	1
A.	Latar Belakang	1
В.	Identifikasi Masalah	2
C.	Rumusan Masalah	3
D.	Maksud dan Tujuan	3
E.	Batasan Masalah	3
BAB 1	II GAMBARAN UMUM	4
A.	Kondisi Geografis	4
В.	Kondisi Sarana	5
BAB 1	III KAJIAN PUSTAKA	10
A.	Lokomotif	10
В.	Jenis Lokomotif	11
C.	Persyaratan Teknis Lokomotif	12
D.	Lokomotif CC 201	17
BAB 1	IV METODOLOGI PENELITIAN	18
A.	Alur Pikir	18
В.	Bagan Alir Penelitian	18
C.	Teknik Pengumpulan Data	20
D.	Teknik Analisis Data	20
E.	Lokasi Dan Jadwal Penelitian	23
BAB \	V ANALISA DAN PEMECAHAN MASALAH	24
A.	Analisis Jumlah Lokomotif Siap Operasi (SO)	24
В.	Analisis Beban Tarik Lokomotif	25
C.	Analisis Kehandalan Lokomotif	29
D.	Analisis Penyebab Gangguan	31

E.	Pemecahan Masalah	33
BAB \	VI PENUTUP	36
A.	Kesimpulan	36
В.	Saran	36
DAFT	AR PUSTAKA	
LAMP	PIRAN	

DAFTAR TABEL

Tabel	II. 1	Jenis dan Jumlah Lokomotif Divre I Sumatera Utara	5
Tabel	II. 2	Nomor Lokomotif CC 201 dan Tahun Mulai Dinas	6
Tabel	II. 3	Data Teknis Lokomotif CC 201	7
Tabel	IV. 1	Rumus Beban Tarik Lokomotif	22
Tabel	V. 1	Jumlah Armada Lokomotif CC 201 Divre I Sumatera Utara	24
Tabel	V. 2	Standar Pengoperasian Sarana Lokomotif CC 201	24
Tabel	V. 3	Perhitungan Beban Tarik Lokomotif	27
Tabel	V. 4	Perhitungan Hauling Load Diagram	28
Tabel	V. 5	Tabel Perbandingan Beban Tarik Lokomotif	29
Tabel	V. 6	Jumlah Gangguan Lokomotif	29
Tabel	V. 7	Kilometer Tempuh Lokomotif CC 201	30
Tabel	V. 8	Perhitungan Presentase gangguan Lokomotif	31
Tabel	V. 9	Jenis Gangguan Lokomotif	31
Tabel	V. 10	Tipe Gangguan dan Penanganannya	33

DAFTAR GAMBAR

Gambar	II. 1 Peta Administrasi Provinsi Sumatera Utara	. 4
Gambar	II. 2 Lokomotif CC 201 di Dipo Kisaran	. 6
Gambar	II. 3 Depo Lokomotif Kisaran	. 9
Gambar	IV. 1 Bagan Alir Penelitian	19
Gambar	IV. 2 Standar Pengoperasian Sarana	21
Gambar	V. 1 Hauling Load Diagram Lokomotif CC 201	28

BABI

PENDAHULUAN

A. Latar Belakang

Transportasi memiliki peranan penting dalam kehidupan manusia. Manusia mempunyai kebutuhan untuk berpindah dari satu tempat ke tempat lain. Untuk itu dibutuhkan transportasi sebagai media untuk berpindah baik untuk memindahkan manusia ataupun barang. Dengan bertambahnya kebutuhan manusia akan jasa transportasi berarti bahwa semakin penting peranan transportasi untuk mobilitas orang atau barang. Selain itu transportasi adalah penopang pertumbuhan dan perkembangan terhadap suatu daerah. semakin majunya suatu daerah maka semakin bertambahnya juga kegiatan dan mobilitas yang terjadi, maka daerah tersebut akan semakin berkembang. Salah satu moda transportasi tersebut adalah kereta api.

Kereta api adalah salah satu moda transportasi yang sangat berpengaruh dimana peranan kereta tersebut dapat memudahkan orang dalam berpindah tempat secara massal, dan dalam perpindahan tersebut kereta api juga memperhatikan keselamatan bagi para pengguna jasa agar dapat dijadikan pilihan untuk diprioritaskan dalam melakukan perjalanan jarak jauh maupun jarak pendek.

PT. Kereta Api (Persero) menyediakan fasilitas transportasi umum berupa pelayanan angkutan Kereta Api Indonesia. Pemeriksaan dan perawatan rutin wajib dilakukan untuk menjamin bahwa tiap-tiap sarana yang beroperasi laik beroperasi dan tetap mengutamakan keselamatan perjalanan kereta api.

Pada Divre I Sumatera Utara kereta penumpang dan gerbong barang ditarik menggunakan lokomotif CC 201 dan lokomotif BB 203 sedangkan lokomotif BB 302 dan lokomotif BB 303 untuk menarik gerbong kedalam pabrik atau pengganti Kereta Rerl Diesel Indonesi (KRDI) Sri Lelawangsa relasi Medan-Binjai apabila mengalami gangguan di lintas serta untuk kegiatanlangsir.

Angkutan barang di Divre I Sumatera Utara salah satunya adalah angkutan CPO (*Crude Palm Oil*) yang diperoleh dari Kabupaten Asahan, Simalungun, Labuhanbatu Utara dan Serdang Badagai, Adapun jumlah kapasitas angkut CPO yang diangkut sebesar 1358 ton/hari dengan menggunakan 3 rangkaian KA.

Data gangguan lokomotif yang diperoleh dari Depo Lokomotif Medan, bahwa lokomotif CC 201 paling banyak mengalami gangguan saat beroperasi di lintas dari bulan Maret 2021 sampai bulan Februari 2022 sebanyak 31 kali gangguan. Gangguan tersebut berpengaruh terhadap perjalan kereta api dimana gangguan lokomotif yang terjadi seperti lok mati, sistem kelistrikan, ground, sistem pengisian baterai, sistem peranginan dan tenaga lemah.

Untuk memaksimalkan potensi angkutan yang ada tersebut maka kondisi sarana penggerak dalam hal ini lokomotif sangat berpengaruh dan dilihat dari kebutuhan akan pelayanan jasa kereta api maka peningkatan kehandalan sarana khususnya lokomotif sangat menunjang dalam pengoperasian suatu sistem kereta api dalam menarik rangkaian.

Semakin tingginya jam operasi dari sarana penggerak dan umur teknis dari lokomotif yang semakin bertambah, menimbulkan terjadinya gangguangangguan pada lokomotif yang mempengaruhi kehandalan lokomotif dalam pengoperasiannya. Dari bulan Maret 2021 sampai bulan Februari 2022, lokomotif CC 201 mengalami penurunan kehandalan sebesar 16%.

Untuk itu perlu diadakan evaluasi kinerja lokomotif CC 201 yang digunakan untuk operasional di Divre I Sumatera Utara. Sehingga apa yang diterapkan dapat disesuaikan dengan keadaan yang laik untuk dapat dioperasikan. Dari permasalahan yang telah dijelaskan diatas, maka dilakukan penelitian yang berjudul "EVALUASI KINERJA LOKOMOTIF CC 201 DI DIVRE I SUMATERA UTARA"

B. Identifikasi Masalah

Dari latar belakang yang telah dijelasakan tersebut, maka didapat identifikasi permasalahan :

1. Di Divre I Sumatera Utara hanya menggunakan lokomotif CC 201 dan BB 203 untuk menarik kereta penumpang dan gerbong barang.

- 2. Terjadinya gangguan-ganguan lokomotif CC 201 di lintas pada saat lokomotif beroperasi yaitu sebanyak 31 gangguan.
- 3. Lokomotif CC 201 mengalami penurunan kehandalan dari bulan Maret 2021 sampai bulan Februari 2022 sebesar 16%.

C. Rumusan Masalah

Dari latar belakang belakang yang telah diuraikan di atas maka dapat diketahui permasalahan yang ada, yaitu:

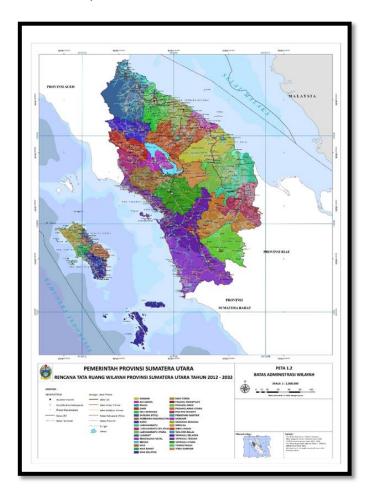
- 1. Bagaimana kinerja lokomotif CC 201 di Divre I Sumatera Utara?
- 2. Gangguan apa saja yang terjadi pada lokomotif CC 201 di Divre I Sumatera Utara?
- 3. Bagaimana usaha untuk meningkatkan kinerja dari lokomotif CC 201 di Divre I Sumatera Utara?

D. Maksud dan Tujuan

Maksud dari penelitian ini adalah untuk melakukan evaluasi kinerja lokomotif CC 201 Di Divre I Sumatera Utara sehingga dapat ditinjau dari pengaruh gangguan lokomotif terhadap kinerja lokomotif tersebut. Adapun tujuan dari penulisan kertas kerja wajib ini adalah sebagai berikut:

- 1. Mengidentifikasi kinerja lokomotif CC 201 di Divre I Sumatera Utara.
- 2. Mengidentifikasi jenis gangguan yang mempengaruhi kinerja lokomotif CC 201 di Divre I Sumatera Utara.
- 3. Memberikan rekomendasi untuk meningkatkan kinerja lokomotif tersebut.

E. Batasan Masalah


Untuk membatasi lingkup permasalahan, maka masalah yang akan dibahas hanya mencakup hal-hal sebagai berikut:

- 1. Penelitian dilakukan di Divre I Sumatera Utara.
- 2. Objek penelitian lokomotif CC 201.
- 3. Pada penelitian ini mebahas Siap Operasi (SO) lokomotif, perhitungan beban tarik lokomotif gerbong tanki CPO, gangguan lokomotif dan evaluasi gangguan lokomotif.

BAB II GAMBARAN UMUM

A. Kondisi Geografis

Divre I Sumatera Utara berada di Provinsi Sumatera Utara, yang terletak pada 1°- 4° Lintang Utara dan 98°- 100° Bujur Timur, luas Provinsi Sumatera Utara 71.680 km², Sumatera Utara merupakan provinsi keempat terbesar jumla penduduknya di Indonesia, jumlah penduduk Provinsi Sumatera Utara 72.981,23 km² yang terbagi menjadi 8 Kota Madya dan 25 Kabupaten.

Sumber: BAPPEDA Provinsi Sumatera Utara, 2022

Gambar II. 1 Peta Administrasi Provinsi Sumatera Utara

Provinsi Sumatera Utara berbatasan dengan daerah perairan dan laut serta dua provinsi lain yaitu:

a. Sebelah Utara : Berbatasan dengan Provinsi Aceh

Sebelah Timur : Berbatasan dengan Negara Malaysia di Selat Malaka

c. Sebelah Selatan: Berbatasan dengan Provinsi Riau dan Sumatera Barat

d. Sebelah Barat : Berbatasan dengan Samudera Hindia

Divre I Sumatera Utara memiliki jarak total jalan kereta api 485,699 Km dengan lintas operasi sepanjang 384,277 Km, dengan rincian yaitu Stasiun Medan-Stasiun Rantau Prapat berjarak 267,61 Km, Stasiun Medan-Stasiun Binjai berjarak 20,89 Km, Stasiun Medan-Stasiun Ujungbaru sepanjang 23,97 Km, Stasiun Kisaran-Stasiun Tanjung Balai berjarak 20,43 Km, Stasiun Tebing Tinggi-Stasiun Siantar sepanjang 46,67 Km, dan Stasiun Araskabu-Stasiun Kualanamu sepanjang 4,66 Km. Sedangkan lintas non operasi sepanjang 101,422 Km, dengan rincian yaitu Stasiun Binjai-Stasiun Besitang sepanjang 80,91 Km dan Stasiun Binjai-Stasiun Kuala sepanjang 41,41 Km.

B. Kondisi Sarana

Divisi Regional I Sumatera Utara mempunyai 2 jenis lokomotif yaitu lokomotif diesel hidrolik dan lokomotif diesel elektrik yang terdiri dari lokomotif BB 302, lokomotif BB 303, lokomotif BB 203 dan lokomotif CC 201.

Tabel II. 1 Jenis dan Jumlah Lokomotif Divre I Sumatera Utara

NO	JENIS LOKOMOTIF	JUMLAH
1	BB 203	5
2	BB 302	1
3	BB 303	10
4	CC 201	15

Sumber: Dipo Lokomotif Medan, 2022

Penggunaan lokomotif ini yaitu untuk beberapa kegiatan contohnya kegiatan operasional perkeretaapian di Divisi Regional I SumateraUtara untuk menarik kereta penumpang dan gerbong barang serta langsir.

Sumber: Tim PKL SUMBAGUT, 2022

Gambar II. 2 Lokomotif CC 201 di Dipo Kisaran

Lokomotif CC 201 digunakan untuk menarik rangkain kereta api Sribilah Utama dengan pelayanan Medan-Rantau Prapat, dan juga digunakan untuk menarik angkutan barang yaitu Peti Kemas, BBM, CPO, dan lateks.

Tabel II. 2 Nomor Lokomotif CC 201 dan Tahun Mulai Dinas

No	Nomor Lokomotif	Tahun Mulai Dinas
1	CC 201 77 04	1977
2	CC 201 77 08	1977
3	CC 201 83 12	1983
4	CC 201 83 28	1983
5	CC 201 83 32	1983
6	CC 201 89 04	1989
7	CC 201 89 10	1989
8	CC 201 92 06	1992
9	CC 201 83 37	1983

Tabel II. 2 Lanjutan

10	CC 201 83 44	1983
11	CC 201 89 14	1985
12	CC 201 93 02	1983
13	CC 201 99 02	1999
14	CC 201 04 01	1985
15	CC 201 04 04	1985

Sumber : Dipo Lokomotif Medan, 2022

Dari data armada lokomotif CC 201 di Divisi Regional I Sumatera Utara rentang usia lokomotif yaitu 37 tahun sampai dengan 45 tahun, dan terdapat satu lokomotif dengan usia 23 tahun.

Tabel II. 3 Data Teknis Lokomotif CC 201

A.	DIMENSI	UKURAN
	1. Lebar sepur	1067 mm
	2. Panjang badan	14135 mm
	3. Jarak antara alat perangkai	15214 mm
	4. Lebar badan	2642 mm
	5. Tinggi maksimum	3636 mm
	6. Jarak gandar	3632 mm
	7. Jarak antar pivot	7680 mm
	8. Diamete roda penggerak	914 mm
	9. Diameter roda idle	-
	10. Tinggi alat perangkai	770 mm
B.	BERAT	BEBAN
	1. Berat kosong	78 ton
	2. Berat siap	84 ton
	3. Berat adhesi	84 ton
C.	MOTOR DIESEL	SPESIFIKASI
	1. Tipe	GE 7FDL 8
	2. Jenis	4 langkah, turbocharger
	3. Daya mesin	1950 HP
	4. Daya ke generator/convertor	1825 HP

Tabel II. 3 Lanjutan

D.	MOTOR TRAKSI DAN GENERATOR	SPESIFIKASI
	Jumlah motor traksi	6
	2. Tipe motor traksi	761
	3. Gear Rasio	90 : 21
	4. Tipe generator	GT 581
E.	PEFORMANSI	SPESIFIKASI
	1. Kecepatan maksimum	120 km/jam
	2. Gaya tarik maksimum	17640 kgf
	3. Kecepatan minimum kontinyu	24 km/jam
	4. Jari-jari lengkung terkecil	56.7 m
F.	KAPASITAS	VOLUME
	1. Bahan bakar	3028 liter
	2. Minyak pelumas	984 liter
	3. Air pendingin	684 liter
	4. Pasir	500 liter
G.	LAIN-LAIN	SPESIFIKASI
	Sistem rem	Udara tekan, dinamik, parkir
	Tipe kompresor	Gardner Denver WBO

Sumber : Atmosukardjo, 2012

Pada Divre I Sumatera Utara memiliki Gerbong Datar (GD), Gerbong Tertutup, (GT), dan Gerbong Ketel (GK). Gerbong tersebut digunakan untuk mengangkut Peti Kemas, BBM, CPO dan Lateks.

Divre I Sumatera Utara mempunyai 2 Depo Lokomotif, yaitu Depo Lokomotif Medan beserta Depo Lokomotif Kisaran.Depo Lokomotif Medan adalah depo terbesar yang berada di Divisi Regional I Sumatera Utara yang berada di dekat Stasiun Besar Kereta Api Medan. Sedangkan Depo Lokomotif Kisaran berada di dekat Stasiun Kisaran dan merupakan tempat perbaikan saja, apabila terdapat lokomotif yang terjadi gangguan saat beroperasi di lintas. Sehingga apabila ditemukan lokomotif yang rusak di sekitar wilayah Kisaran maka dapat dilakukan perbaikan di Depo Lokomotif Kisaran. Di depo ini melakukan perawatan baik dari perawatan harian (daily check), perawatan 250 jam (W.3),

perawatan 1000 jam (W.3), perawatan 2000 jam (W.4), perawatan 4000 jam (W.4), perawatan 1 bulan (P1), perawatan 3 bulan (P3), perawatan 6 bulanan (P6), dan perawatan 12 bulanan (P12). Lokomotif yang di rawat di Depo Lokomotif Medan terdiri dari lokomotif diesel hidrolik yang merupakan lokomotif BB 302 dan lokomotif 303. Dan untuk lokomotif diesel elektrik yaitu lokomotif BB 203 dan lokomotif CC 201.

Sumber: Tim PKL SUMBAGUT, 2022

Gambar II. 3 Depo Lokomotif Kisaran

BAB III

KAJIAN PUSTAKA

A. Lokomotif

Lokomotif menurut Undang – Undang Nomor 23 tahun 2007 tentang perkeretaapian, adalah sarana perkeretaapian yang memiliki penggerak sendiri yang bergerak dan digunakan untuk/atau mendorong kereta, gerbong,dan/atau peralatan khusus, antara lain lokomotif listrik dan lokomotif diesel.

Adapun jenis lokomotif yang pernah dioperasikan pada perkeretaapian Indonesia adalah:

- a. Lokomotif uap
- b. Lokomotif listrik
- c. Lokomotif diesel

Dari tiga macam lokomotif tersebut, dua diantaranya (Lokomotif Uap dan Lokomotif Listrik) tidak digunakan. Maka dari itu hanya jenis lokomotif diesel yang berkembang dan digunakan sampai sekarang.

Menurut PP 56 tahun 2009 lokomotif adalah sarana perkeretaapian yang memiliki penggerak sendiri yang bergerak dan digunakan untuk menarik atau mendorong kereta, gerbong, dan peralatan khusus.

Persyaratan teknis adalah ketentuan teknis yang menjadi standar spesifikasi teknis prasana atau sarana perkerataapian, sedangkan spesifikasi teknis adalah persyaratan umum, ukuran, kinerja dan gambar teknis prasarana atau sarana perkeretaapian.

Pengujian adalah kegiatan yang dilakukan untuk mengetahui kesesuaian antara persyaratan teknis, kondisi, fungsi prasarana atau sarana perkeretaapian.

Pemeriksaan adalah kegiatan yang dilakukan untuk mengetahui kondisi dan fungsi prasarana atau sarana perkeretaapian. Pemeriksaan sarana perkeretaapian ada pemeriksaan harian yang dilakukan terhadap peralatan pengereman, peralatan perangkaian, peralatan keselamatan, kelistrikan serta pemeriksaan bulanan dan tahunan yang meliputi pemeriksaan rangka dasar, badan, bogie, peralatan perangkai, peralatan pengereman, peralatan keselamatan, kabin masinis, peralatan penerus daya, peralatan penggerak dan peralatan pengendali.

Perawatan adalah kegiatan yang dilakukan untuk mempertahankan kehandalan prasarana atau sarana perkeretaapian agar tetap laik opearasi.

B. Jenis Lokomotif

Adapun jenis lokomotif menurut KM 81 Tahun 2000 yaitu:

- Lokomotif uap merupakan lokomotif yang dilengkapi dengan tenaga penggerak mulai mesin uap untuk menggerakan roda melalui alat penerus daya mekanik;
- Lokomotif diesel hidrolik merupakan lokomotif yang dilengkapi dengan tenaga penggerak mula motor diesel untuk menggerakan roda melalui alat penerus daya hidrolik;
- 3. Lokomotif diesel elektrik merupakan jenis lokomotif yang dilengkapi dengan tenaga penggerak mula motor diesel untuk menggerakan roda melalui alat penerus daya elektrik dan motor traksi;
- 4. Lokomotif elektrik merupakan lokomotif yang menerima daya listrik dari luar lokomotif itu sendiri untuk menggerakan roda melalui alat penerus daya elektrik dan menggerakan motor traksi.

Jenis lokomotif menurut PM 153 Tahun 2016:

- Lokomotif diesel merupakan lokomotif yang menggunakan peralatan penggerak dengan sumber tenaga motor diesel. Lokomotif diesel terdiri atas:
 - a. Lokomotif diesel hidrolik adalah lokomotif diesel dengan peralatan penerus daya hidrolik
 - b. Lokomotif diesel elektrik adalah lokomotif diesel dengan peralatan penerus daya elektrik.

2. Lokomotif elektrik merupakan lokomotif yang menggunakan peralatan penggerak dengan sumber tenaga listrik dari luar lokomotif.

C. Persyaratan Teknis Lokomotif

Adapun persyaratan teknis lokomotif menurut PM 153 tahun 2016 yaitu:

- 1. Kontruksi dan komponen
 - a. Rangka dasar lokomotif memiliki persyaratan sebagai berikut:
 - 1) Dapat menahan beban, getaran, dan goncangan sebesar berat lokomotif.
 - 2) Mampu menahan beban *bucking* (tekukan) sesuai kondisi operasional.
 - 3) Mampu menaghan beban impak akibat tumbukan.
 - 4) Tahan terhadap korosi
 - 5) Kontruksi menyatu(*monocoque* atau semi *monocoque*) atau tidak menyatu dengan badan lokomotif(*platform*).
 - b. Badan lokomotif memiliki persyaratan sebagai berikut:
 - Kontruksi badan mampu menahan beban saat operasional tanpa mengalami deformasi tetap.
 - 2) Mampu menahan beban impak akibat tumbukan.
 - 3) Menggunakan material tahan korosi
 - 4) Mampu melindungi sisi bagian dalam badan lokomotif terhadap perubahan cuaca.
 - c. Kabin masinis harus dilengkapi dengan:
 - 1) Peralatan operasional harus mempunyai fungsi sekurangkurangnya terdiri atas:
 - a) Pembalik arah
 - b) Pengatur daya
 - c) Pengatur pengereman
 - d) *Deadman device* terhubung langsung dengan sistem pengereman darurat
 - e) Klakson
 - f) Lampu utama
 - g) Lampu tanda

- 2) Peralatan pemantau adalah berupa indaktor atau petunjuk yang digunakan sebagai alat bantu memantau pengoperasian lokomotif, diletakan ditempat yang mudah dilihat dan dibaca. Peralatan pemantau sekurang-kurangnya terdiri atas:
 - a) Rem parkir
 - b) Tenaga penggerak
 - c) Kegagalan fungsi
 - d) Kecepatan yang dilengkapi petunjuk waktu dan perekam
 - e) Tekanan udara pengereman
 - f) Kelistrikan
 - g) Telekomunikasi
- 3) Peralatan kenyamanan kerja terdiri atas:
 - a) Tempat duduk masinis dan asisten masinis
 - b) Pengaturan sirkulasi udara
 - c) Lampu penerangan

d. Bogie terdiri atas:

- Rangka bogie berupa kontruksi sambungan las dari pelat baja atau kontruksi baja cor yang memiliki kekuatan serta kekakuan tinggi terhadap pembebanan vertical, lateral dan longitudinal pada titik kritis tanpa terjadi deformasi tetap.
- 2) Sistem suspensi terdiri atas suspensi primer dan sekunder yang dilengkapi peredam.
- 3) Penerus gaya traksi berupa kontruksi penghubung dan penerus gaya traksi antara bogie dan badan lokomotif atau sebaliknya
- 4) Perangkat roda terdiri atas roda dan as roda, harus memenuhi persyaratan:
 - a) Roda terbuat dari baja tempa, baja roll atau baja tuang
 - b) Roda harus memiliki kekerasan lebih rendah dari kekerasan jalan rel
 - c) Jenis roda adalah roda pejal
 - d) Profil roda sesuai jalan rel untuk kereta api yang dilalui
 - e) As roda dari baja tempa yang mampu menahan beban yang diterimanya.

- f) Lokomotif dengan roda bergigi, roda terbuat dari baja khusus atau bahan lain setara dengan permukaan yang dikeraskan.
- e. Peralatan penerus daya adalah alat yang digunakan untuk meneruskan daya dari sumber tenaga ke roda. Peralatan penerus daya harus memenuhi persyaratan:
 - 1) Kontruksi kokoh
 - 2) Mampu tukar
 - 3) Mudah perawatan
 - 4) Hemat energi
 - 5) Mudah dikendalikan dari kabin
 - 6) Mampu meneruskan daya dengan efisien sesuai dengan kebutuhan traksi
 - 7) Mampu meneruskan daya dalam dua arah dengan kemampuan sama.
- f. Peralatan penggerak (sumber tenaga) dapat menggunakan 2 jenis sumber tenaga, terdiri atas:
 - 1) Motor diesel harus memenuhi persyaratan:
 - a) Mampu menyediakan daya sesuai kebutuhan traksi
 - b) Standar kebisisingan eksternal dan emisi gas buang
 - 2) Tenaga listrik harus memenuhi persyaratan:
 - a) Mampu menyediakan daya sesuai kebutuhan traksi
 - b) Besarnya arus listrik yang diterima sesuai dengan kemampuan penangkap arus
 - c) Dilengkapi pemutus arus listrik
 - d) Tidak menimbulkan gangguan elektromagnetik terhadap peralatan prasarana.
- g. Peralatan pengereman merupakan suatu peralatan yang digunakan untuk mengurangi kecepatan dan menghentikan lokomotif atau kereta, dan dapat digunakan sebagai:
 - 1) Rem sendiri dioperasikan untuk pengereman lokomotif sendiri
 - 2) Rem pelayanan dioperasikan untuk mengendalikan kecepatan atau menghentikan lokomotif dan rangkaiannya sesuai tingkat kecepatan yang harus memenuhi persyaratan:

- a) Gaya pengereman memperhitungkan jarak, kecepatan maksimum dan landai penentu maksimum.
- b) Besarnya gaya pengereman tidak menyebabkan roda terkunci
- c) Mampu menghentikan kereta api dalam kondisi pengereman normal.
- 3) Rem parkir dioperasikan untuk menahan kereta api pada saat parkir yang harus memenuhi persyaratan:
 - a) Mampu menahan kereta api sesuai kelandaian jalan rel yang dilalui
 - b) Menggunakan sistem mekanik
- 4) Rem darurat adalah sistem yang dapat berfungsi otomatis untuk menghentikan kereta api pada kondisi darurat yang harus memenuhi persyaratan:
 - a) Mampu menghentikan kereta api pada kelandaian jalan rel yang dilalui
 - b) Bekerja secara otomatis menghentikan kereta api apabila terjadi kegagalan sistem pengereman
 - Dapat mengembalikan fungsi pengereman dari kondisi darurat ke normal secara otomatis
 - d) Menjaga kereta tetap dalam posisi aman.
- h. Peralatan perangkai merupakan peralatan yang menghubungkan antar sarana yang kontruksinya dapat terpisah atau dalam satu kesatuan yang mampu menyesuaikan terhadap Gerakan kereta api sesuai jalan rel yang dilalui. Peralatan perangkai terdiri atas:
 - 1) Perangkat mekanik harus mampu meneruskan gaya maksimum yang diterima untuk tarik atau tekan sesuai desain.
 - 2) Perangkai pneumatic harus mampu menyalurkan fluida sesuai dengan tekanan yang dibutuhkan.
 - 3) Perangkai elektrik harus memenuhi persyaratan:
 - a) Mampu menghantarkan arus listrik denga naman
 - b) Mampu menghantarkan arus listrik sesuai dengan tegangan yang digunakan
- Peralatan pengendali merupakan alat yang digunakan untuk mengendalikan akselerasi dan deselerasi.

- 1) Peralatan pengendali terdiri dari:
 - a) Pembalik arah merupakan perangkat dengan sistem kedudukan maju, netral dan mundur
 - b) Pengatur daya merupakan perangkat pengatur tenaga secara bertahap dari tenaga rendah sampai tinggi dan sebaliknya
 - c) Pengatur pengereman merupakan perangkat pengatur gaya pengereman secara bertahap dan pengereman darurat
- 2) Peralatan pengendali harus memenuhi persyartan:
 - a) Memiliki tuas atau tombol pengendali pergerakan
 - b) Dilengkapi alat proteksi operasional
 - c) Mudah dioperasikan dari tempat duduk masinis
 - d) Ergonomis
- j. Peralatan keselamatan merupakan suatu perlengkapan atau alat yang digunakan untuk keperluan darurat dan terdiri dari:
 - Alat siaga digunakan sebagai alat bantu peringatan atau kewaspadaan kepada masinis selama mengoperasikan lokomotif yang harus memenuhi persyaratan:
 - a) Bekerja berdasarkan interval waktu
 - b) Memberkan peringatan dini berupa suara
 - c) Bekerja dengan pengaktifan pengereman darurat secara otomatis.
 - 2) Alat pemadam api ringan harus memenuhi persyaratan:
 - a) Minimum satu unit untuk setiap kabin dengan kapasitas 3-5 kg
 - b) Jenis bahan pemadam menggunakan bubuk kimia atau jenis lain sesuai dengan peraturan penggunakan alat pemadam api.
 - c) Penempatannya mudah dijangkau dan diberi tanda khusus.
 - 3) Penganjal roda sebagai alat bantu yang digunakan untuk menahan lokomotif pada saat parkir, harus memenuhi persyaratan:
 - a) Jumlah minimum 4 unit
 - b) Berwarna mencolok
 - c) Terbuat dari bahan yang ringan dan kuat
 - d) Memiliki koefisien gesek yang tinggi

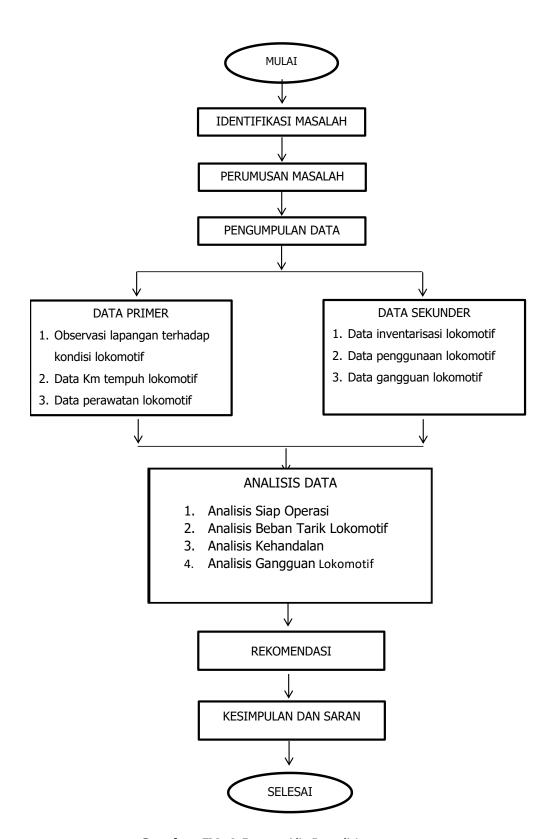
- 4) Pengendali rem darurat sebagai alat kendali yang digunakan untuk mengaktifkan rem darurat, harus memenuhi persyaratan:
 - a) Mudah dijangkau dan dilihat oleh masinis
 - b) Berupa tuas atau tombol
- k. Penghalau rintangan merupakan suatu alat yang digunakan untuk menghalau atau menyingkirkan rintangan pada jalan rel yang ditempatkan pada bagian depan bawah lokomotif, yang harus memenuhi persyaratan:
 - 1) Dirancang mampu menahan beban statis minimum 15 ton pada sumbunya
 - 2) Dipasang pada rangka dasar dengan sambungan tidak tetap
 - 3) Mampu menghalau benda kearah samping
 - 4) Tinggi alat penghalau dapat melindungi komponen bawah rangka dasar atau bogie yang paling rendah
 - 5) Tidak bersinggungan dengan sarana perkeretaapian lain pada saat dirangkaikan.

D. Lokomotif CC 201

Lokomotif CC 201 adalah lokomotif buatan *General Electric (GE) Transportation* jenis U18C. Dibanding lokomotif tipe sebelumnya yaitu CC 200, maka tipe CC 201 mempunyai kontruksi yang lebih ramping dengan berat 84 ton dan daya mesin 1950 HP. Lokomotif ini bergandar Co' Co'. Artinya lokomotif memiliki 2 bogie masing-masing 3 gandar atau 6 gandar penggerak dengan 6 motor traksi , sehingga lokomotif ini dapat dioperasikan pada lintas datar maupun pegunungan. Lokomotif ini, sama seperti lokomotif GE lainnya, mampu berlari sampai kecepatan 120 km/jam, meskipun kecepatan kereta api saat ini dibatasi maksimal 90 km/jam. Lokomotif CC 201 secara prinsip merupakan Lokomotif Diesel Listrik , Komponen sistem transmisi elektrik pada lokomotif CC 201 adalah main generator, exciter generator, auxiliary generator dan traksi motor (Fitria, 2015).

BAB IV

METODOLOGI PENELITIAN


A. Alur Pikir

Alur pikir merupakan suatu metode awal dalam rencana penelitian yang dilakukan untuk mendapatkan pemecahan masalah dalam tugas KKW dengan judul "Evaluasi Kinerja Lokomotif CC 201 Di Divre I Sumatera Utara". Hasil dari alur pikir ini akan menghasilkan kesimpulan yang dapat dijadikan acuan penyelesaian atau sebagai masukan terhadap pertanyaan yang telah diambil. Penelitian ini terlebih dahulu mengumpulkan data untuk mendukung penelitian ini, meliputi data sekunder dan data primer. Kemudian menganalisis data untuk mengidentifikasi masalah yang ada dan mencari solusi. Adapun langkah-langkah rencana penelitian ini adalah sebagai berikut:

- B. Menentukan maksud dan tujuan penelitian ini, serta ruang lingkup dan batasan permasalahan penelitian yang dilakukan.
- C. Mengumpulkan data pendukung untuk penelitian.
- D. Melakukan identifikasi permasalahan yang terjadi pada kinerja lokomotif
 CC 201.
- E. Menganalisis siap operasi lokomotif, daya tarik lokomotif dan gangguangangguan pada lokomotif.
- F. Memberikan rekomendasi pemecahan masalah berdasarkan hasil analisis yang telah dilakukan.
- G. Menetapkan kesimpulan dari hasil analisis dan pemecahan permasalahan yang telah dilakukan.

H. Bagan Alir Penelitian

Bagan alir adalah sebuah tahapan kegiatan dalam analisis dari awal studi hingga menghasilkan suatu kesimpulan dan rekomendasi. Pola pikir yang dikembangkan dalam penelitian ini dapat dilihat pada bagan alir penelitian, sebagai berikut:

Gambar IV. 1 Bagan Alir Penelitian

I. Teknik Pengumpulan Data

Data adalah kebutuhan mutlak dalam suatu penelitian oleh karena itu untuk mempermudah dalam penelitian ini, maka data yang dikumpulkan adalah data sekunder dan primer.

1. Data Sekunder

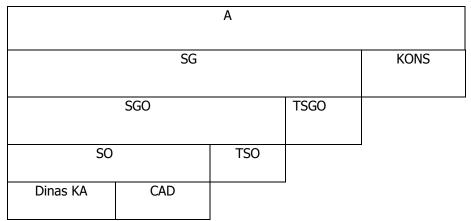
Sumber data sekunder diperoleh dari kantor Divisi Regional I Sumatera Utara dan Depo Lokomotif Medan. Data sekunder berfungsi untuk mendukung dan menjadi. Berikut data sekunder yang diperoleh yaitu:

- a. Data Inventari lokomotif, (jumlah armada, kondisi kondisi bulanan)
- b. Data penggunaan lokomotif CC 201
- c. Data gangguan lokomotif CC 201

2. Data Primer

Data Primer merupakan data yang diperoleh dari hasil pengamatan lapangan secara langsung adalah data observasi lapangan terhadap lokomotif CC 201. Berikut data primer yaitu:

- a. Observasi lapangan terhadap kondisi lokomotif.
- b. Data km tempuh lokomotif
- c. Data perawatan lokomotif


J. Teknik Analisis Data

Berikut adalah analisis yang dipakai dalam melakukan evaluasi kinerja lokomotif CC 201, yaitu :

1. Analisis Siap Operasi Lokomotif

Jumlah lokomotif yang siap operasi (SO) merupakan salah satu parameter untuk mengetahui baik buruknya kinerja lokomotif di suatu Divisi Regional. untuk itu PT. KAI (Persero) menetapkan standar untuk pengoperasian sarana, dengan adanya standar ini, diharapkan dapat mengetahui kinerja sarana kereta api di Indonesia.

Berikut merupakan Standar Pengoperasian Sarana:

Sumber: PT. KAI (Persero), 1996

Gambar IV. 2 Standar Pengoperasian Sarana

Keterangan:

A : Armada adalah jumlah keseluruhan sarana yang dimiliki depo

SG : Siap guna adalah jumlah sarana baik kondisi siap operasi atau Tidak siap operasi

KONS : Sarana KA yang sementara menunggu suku cadang, untuk perbaikan atau overhoul/ rehab

TSGO: Tidak siap guna operasi adalah jumlah sarana yang dirawat di Balai Yasa

TSO : Tidak siap operasi adalah yang dirawat / PB di depo

SO : Siap operasi merupakan jumlah sarana dalam kondisi laik operasi, penggunaan lokomotif ini untuk kegiatan operasional perkeretaapian di wilayah Divre I Sumatera Utara dalam menarik seluruh rangkaian kereta api yang dimiliki oleh Divre I Sumatera Utara dan melakukan langsir.

Dengan adanya standar ini, maka apabila sarana dalam hal ini lokomotif tidak memenuhi standar tersebut bisa dikatakan bahwa kinerja dari sarana tersebut masih kurang atau buruk.

2. Daya Beban Tarik Lokomotif

Perhitungan beban tarik lokomotif adalah data yang diperoleh dari perhitungan yang dilakukan dengan mengolah data perhitungan gaya tarik lokomotif yang ada di Divre I Sumatera Utara. Hasil perhitungan beban tarik lokomotif adalah besarnya beban maksimum yang dapat ditarik lokomotif CC 201, sehingga dapat diketahui banyaknya kereta atau gerbong pada kondisi isi atau kosong yang dapat ditarik lokomotif pada kecepatan tertentu dan pada kelandaian tertentu.

Tabel IV. 1 Rumus Beban Tarik Lokomotif

RUMUS	Keterangan	
	HL = Beban Tarik Lokomotif (Ton)	
	Z = Gaya Tarik Lokomotif (kgf)	
	W _L = Hambatan Lokomotif (kg)	
$HL = \frac{Z - WL - (ixGL)}{i + ww}$	G_L = Berat Lokomotif (Ton)	
	W_W = Hambatan Spesifik Lokomotif (kg/Ton)	
	I = Kelandaian Jalan Rel $\binom{0}{100}$	
	Z = Gaya Tarik Lokomotif (kgf)	
	n = Daya Lokomotif (HP)	
$Z = \frac{270 \times n}{v} \times \eta$	v = Kecepatan (km/jam)	
V	η = Konstanta \approx 0.82	
	W _L = Hambatan Lokomotif (kg)	
$W_L = G_L \times W_L$	G_L = Berat Siap Lokomotif (Ton)	
	w_L = Hambatan Spesifik Lokomotif (kg/Ton)	
	w _L = Hambatan Spesifik Lokomotif (kg/Ton)	
	P = Konstanta	
	Q = Konstanta	
	F = Luas Penampang Lokomotif	
$W_{L} = P + Q_{GL}^{F} \left(\frac{v + va}{10}\right)^{2}$	(m²)	
	G_L = Berat Siap Lokomotif (Ton)	
	v = Kecepatan (km/jam)	
	va = Kecepatan Angin dari Samping = 0	
	(km/jam)	

Tabel IV.1 Lanjutan

Sumber: Atmosukardjo, 2012

 $n = \frac{HL}{Gw}$

3. Kehandalan Lokomotif

Dalam pengoperasian lokomotif, memiliki norma atau suatu standar untuk menentukan toleransi terjadinya lokomotif mogok (gangguan).

Toleransi gangguan lokomotif:

Sumber: PT. KAI (Persero), 1996

Persentase Gangguan =
$$\frac{Gangguan/lokomotif}{0,00003} \times 100\%$$

Sumber: PT. KAI (Persero), 1996

Toleransi gangguan kepada lokomotif tersebut dipakai untuk menganalisis tingkat kehandalan lokomotif dan untuk mengetahui tingkat kerusakan pada lokomotif dan komponen yang memerlukan perawatan lebih pada lokomotif.

K. Lokasi Dan Jadwal Penelitian

1. Lokasi Penelitian

Lokasi dilaksanakan penelitian dalam pengerjaan kertas kerja wajib ini dilakukan di Divre I Sumatera Utara tepatnya di Depo Lokomotif Kisaran.

2. Jadwal Penelitian

Waktu pengumpulan data dilakukan pada saat praktek kerja lapangan (PKL). Pengumpulan data dilakukan pada tanggal 2022 sampai dengan tanggal 14 Juni 2022. Penyusunan dan analisis data dilakukan mulai dari tanggal 19 Juni 2022 sampai dengan tanggal 28 Juli 2022.

BAB V ANALISA DAN PEMECAHAN MASALAH

A. Analisis Jumlah Lokomotif Siap Operasi (SO)

Dengan standar pengoperasian sarana kereta api yang ada, maka dapat mengetahui kinerja lokomotif CC 201, untuk mengetahui kondisi lokomotif di Divre I Sumatera Utara dapat melihat tabel sebagai berikut:

Tabel V. 1 Jumlah Armada Lokomotif CC 201 Divre I Sumatera Utara

Bulan	Α	KONS	SG	TSGO	SGO	TSO	SO	CAD	Dinasan KA
Januari	15	0	15	6	9	0	9	0	9
Februari	15	0	15	4	11	0	11	2	9
Maret	15	0	15	3	12	0	12	3	9

Sumber : Depo Lokomotif Medan, 2022

Dari data diatas dapat dilihat bahwa pada bulan Februari sampai Maret 2022 jumlah armada lokomotif CC 201 tetap dan tidak ada lokomotif yang di konserversi, tetapi masih terdapat lokomotif yang tidak siap guna operasi.

Dengan standar pengoperasian sarana kereta api yang ada, maka dapat dianalisis standar pengoperasian lokomotif yang ada di Divre I Sumatera Utara sebagai berikut :

Tabel V. 2 Standar Pengoperasian Sarana Lokomotif CC 201

Bulan		Stan	Standar			Reali	Dinasan KA		
Dulaii	Α	KONS	SGO	SO	Α	KONS	SGO	SO	Dillasali NA
Januari	15	0	14	13	15	0	9	9	9
Februari	15	0	14	13	15	0	11	11	9
Maret	15	0	14	13	15	0	12	12	9

Sumber: Depo Lokomotif Medan, 2022

Contoh perhitungan standar pengoperasian sarana kereta untuk lokomotif CC 201 sebagai berikut :

Untuk bulan Januari 2022

A = 15 lokomotif

KONS = 0 lokomotif

SG = A - KONS

= 15 - 0

= 15 lokomotif

 $SGO = 92,5 \% \times SG$

= 92,5 % x 15

= 13,87 dibulatkan menjadi 14 lokomotif

Untuk lokomotif siap guna operasi pada bulan Januari 2022 di Divre I Sumatera Utara tidak memenuhi standar pengoperasian sarana kereta api.

 $SO = 85 \% \times SG$

 $= 85 \% \times 15$

= 12,75 dibulatkan menjadi 13 lokomotif

Untuk lokomotif siap operasi pada bulan Januari 2022 di Divre I Sumatera Utara tidak memenuhi standar pengoperasian sarana kereta api.

B. Analisis Beban Tarik Lokomotif

Analisis beban tarik lokomotif digunakan untuk menentukan kemampuan lokomotif dalam menarik rangkaian gerbong, sehingga dapat diketahui berapa banyak gerbong yang dapat ditarik pada saat kondisi isi atau kosong. Lintas yang diambil yaitu Rantau Prapat-Belawan yang dilalui oleh angkutan CPO yang memiliki kelandai tertinggi 11‰ pada petak jalan Ratau Prapat-Marbau. Adapun perhitungan beban tarik lokomotif CC 201 adalah sebagai berikut:

Lokomotif CC 201

Daya (N): 1950 HP

Berat (G₁): 84 ton

Faktor konstanta yang tergantung mekanisme & susunan gandar (P): 2,86

Faktor konstanta yang tergantung pada badan lokomotif (Q) : 0,69

Luas penampang lokomotif dalam m persegi (F) : 10 m^2 Konstanta (η) : 0.82

Kelandaian Jalan (I)

a. Gaya Tarik Lokomotif

Gaya tarik lokomotif adalah gaya maksimum yang dibutuhkan untuk menarik beban atau rangkaian kereta api. Gaya tarik lokodapat dihitung dengan rumus berikut:

$$Z = \frac{270 \times N}{v} \times \eta$$

$$Z = \frac{270 \times 1950}{45} \times 0.82$$

$$Z = 9594 \text{ kgf}$$

Berdasarkan perhitungan diatas dapat diketahui bahwa gaya tarik lokomotif adalah sebesar 9594 kgf.

b. Hambatatan Lokomotif

Hambatan lokomotif adalah tahanan yang berasal dari berat lokomotif itu sendiri dalam berbagai kecepatan. Hambatan lokomotif dapat dihitung menggunakan rumus berikut :

$$W_{L} = G_{L} \times W_{L}$$

$$W_{L} = P + Q \left[\frac{F}{Gl} \right] \left[\frac{v}{10} \right]^{2}$$

$$W_{L} = 2,86 + 0,69 \left[\frac{10}{84} \right] \left[\frac{45}{10} \right]^{2}$$

$$W_{L} = 4,52 \text{ kg/ton}$$

$$W_{L} = 84 \times 4,52$$

$$W_{L} = 379,9 \text{ ton}$$

Berdasarkan perhitungan diatas dapat diketahui bahwa hambatan lokomtif adalah sebesar 379,9 ton.

c. Hambatan Spesifik Kereta/Gerbong

Hambatan kereta / gerbong adalah tahanan yang berasal dari berat rangkaian yang ditarik. Berikut rumus hambatan kereta / gerbong :

$$w_w = 2.5 + \frac{v^2}{4000}$$

$$w_w = 2.5 + \frac{45^2}{4000}$$

$$w_w = 3.01 \text{ kg/ton}$$

Berdasarkan perhitungan diatas dapat diketahui bahwa hambatan spesifik kereta/gerbong adalah 3,01 ton.

d. Beban Tarik Lokomotif

Beban tarik lokomotif merupakan beban suatu rangkaian yang ditarik oleh lokomotif. Berikut rumus perhitungan beban tarik lokomotif :

$$HL = \frac{Z - WL - (ixGL)}{i + ww}$$

$$HL = \frac{9594 - 379,97 - (11x 84)}{11 + 3,01}$$

HL = 591,88 ton

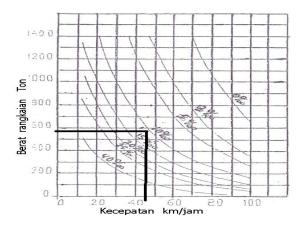
Berdasarkan perhitungan diatas dapat diketahui bahwa beban tarik lokomotif adalah 591,88 ton.

e. Rangkaian Maksimal

Rangkain maksimal adalah banyak rangkaian kereta penumpang atau gerbong barang yang dapat ditarik oleh lokomotif. Berikut rumus perhitungan rangkaian maksimal yang dapat ditarik lokomotif:

$$n = \frac{HL}{Gw}$$
$$n = \frac{591,88}{48}$$

= 12,33 dibulatkan menjadi 12 lokomotif


Berdasarkan perhitungan diatas dapat diketahui rangkaian maksimal adalah 12 lokomotif.

Berdasarkan perhitungan beban tarik lokomotif diatas dapat dilihat pada table berikut ini

Tabel V. 3 Perhitungan Beban Tarik Lokomotif

NO	V (km/jam)	Z (kgf)	WL (kg)	Ww (kg/ton)	HL 11‰ (ton)	n 11‰ (unit)
1	45	9594,0	380,0	3,0	591,9	12
2	50	8634,6	412,7	3,1	516,7	11
3	55	7849,6	449,0	3,3	454,3	9
4	60	7195,5	488,6	3,4	401,6	8

Dapat dilihat dari tabel diatas bahwa lokomotif CC 201 pada lintas Rantau Prapat-Belawan mampu menarik gerbong tangki isi sebanyak 12 gerbong pada kelandaian 11‰. Dan dapat juga menentukan beban tarik lokomotif CC 201 dengan menggunakan Hauling Load Diagram, jadi dapat diketahui berapa ton kemampuan lokomotif CC 201 dalam menarik rangkaian. Berikut perhitungan beban tarik lokomotif dengan menggunakan Hauling Load Diagram untuk lokomotif CC 201 yaitu:

Gambar V. 1 Hauling Load Diagram Lokomotif CC 201

Dapat dilihat dari hauling load diagram kecepatan 45 km/jam Hauling Load Diagram diperoleh berat rangkaian maksimum adalah sekitar 590 ton, maka untuk mengetahui berapa gerbong yang dapat ditarik adalah:

n =
$$\frac{590}{48}$$

= 12, 29 Gerbong dibulatkan menjadi 12 gerbong

Tabel V. 4 Perhitungan Hauling Load Diagram

No	Kecepatan (km/jam)	Berat (ton)	Gerbong (unit)
1.	45	590	12
2.	50	580	10
3.	55	420	9
4.	60	380	8

Dari perhitungan dapat diketahui banyaknya gerbong yang mampu ditarik lokomotif CC 201 dengan hauling load diagram pada kelandaian 11‰, yang kemudian dapat disesuaikan dengan kondisi lapangan sebagai berikut:

Tabel V.5 Tabel Perbandingan Beban Tarik Lokomotif

		<u> </u>	
NO	Kecepatan	Hauling	Kondisi
	(km/jam)	Load (unit)	Esisting
			(unit)
1.	45	12	11
2.	50	10	10
3.	55	9	8
4.	60	8	7

Dengan melihat tabel diatas lokomotif CC 201 pada Divre I Sumatera Utara mengalami penurunan peformasi, ini dapat menyebabkan keterlambatan dalam perjalanan kereta api.

C. Analisis Kehandalan Lokomotif

Dalam melakukan analisis kehandalan lokomotif maka terlebih dahulu harus mengetahui gangguan-gangguan yang terdapat pada lokomotif CC 201, berikut merupakan jumlah gangguan lokomotif:

Tabel V. 6 Jumlah Gangguan Lokomotif

	TAHUN	JUMLAH
Maret	2021	6
April	2021	6
Mei	2021	5
Juni	2021	5
Juli	2021	-
Agustus	2021	2
September	2021	1
Oktober	2021	-
November	2021	-
Desember	2021	1
Januari	2022	1
Februari	2022	4
	April Mei Juni Juli Agustus September Oktober November Desember Januari	April 2021 Mei 2021 Juni 2021 Juli 2021 Agustus 2021 September 2021 Oktober 2021 November 2021 Desember 2021 Januari 2022

Sumber: Depo lokomotif Medan, 2022

Dari data di atas dapat diketahui jumlah gangguan lokomotif CC 201 dari bulan Maret 2021 sampai dengan bulan Februari 2022, untuk frekuensi terbesar gangguan lokomotif CC 201 yaitu pada bulan Maret dan April dengan frekuensi gangguan 6. Adapun kilometer tempuh lokomotif CC 201 yaitu:

Tabel V. 7 Kilometer Tempuh Lokomotif CC 201

NO	BULAN	TAHUN	JUMLAH KM
1	Maret	2021	69.622
2	April	2021	83.238
3	Mei	2021	72.863
4	Juni	2021	76.900
5	Juli	2021	62.553
6	Agustus	2021	64.795
7	September	2021	63.570
8	Oktober	2021	72.903
9	November	2021	73.633
10	Desember	2021	78.028
11	Januari	2022	79.750
12	Februari	2022	82.305
	JUMLAH	880	.160

Sumber: Depo Lokomotif Medan, 2022

Pada pengoperasian lokomotif terdapat standar dalam menentukan toleransi terjadi gangguan lokomotif. Untuk menganalisis toleransi gangguan lokomotif terlebih dahulu harus diketahui jumlah gangguan dan kilometer tempuh lokomotif CC 201. Jumlah seluruh armada lokomotif CC 201 di Divre I sumatera Utara yaitu 15 unit. Dan jumlah gangguan 31 gangguan serta kilometer tempuh dari bulan Maret 2021 sampai bulan Februari 2022 sebesar 880.160 km.

Berdasarkan data jumlah gangguan dan kilometer tempuh lokomotif CC 201 maka dapat dihitung toleransi gangguan lokomotif CC 201 di Divre I Sumatera Utara yaitu:

Toleransi gangguan = $\frac{30 \ gangguan}{1 \ juta \ kilometer}$

 $\frac{\text{jumlah gangguan}}{1.000.000} = \frac{31 \text{ gangguan}}{880.160}$

Jumlah gangguan = $\frac{31 gangguan \times 1.000.000}{880.160}$

= 35,22 dibulatkan menjadi 35 gangguan/ 1 juta km

Sehingga presentase gangguan lokomotif CC 201 yaitu:

Presentase
$$= \frac{gangguan/1 \ juta \ km}{30} \ x \ 100\%$$
$$= \frac{35}{30} \ x \ 100\%$$
$$= 116 \ \%$$

Tabel V. 8 Perhitungan Presentase gangguan Lokomotif

NO	LOK	GANGGUAN	KM TEMPUH	GANGGUAN/KM	TOLERANSI (%)
1	CC 201	31	880.160	0,000035	116

Berdasarkan hasil analisis yang telah dilakukan dapat diketahui bahwa gangguan lokomotif CC 201 yang terjadi selama tahun 2021 sampai dengan tahun 2022 sudah melebihi toleransi gangguan lokomotif yaitu sebesar 16 %, sehingga mengurangi kehandalan lokomotif CC 201 di Divre I Sumatera Utara dalam melakukan dinasan KA.

D. Analisis Penyebab Gangguan

Pada lokomotif CC 201 masih adanya gangguan lokomotif di lintas dan gangguan tersebut terjadi berulang-ulang. Maka diadakan identifikasi terhadap jenis dan penyebab gangguan lokomotif tersebut sehingga didapatkan cara untuk menanggulangi agar tidak terjadi gangguan yang sama.

Berikut merupakan tabel jenis gangguan lokomotif di Divre I Sumatera Utara dari tahun 2021 sampai tahun 2022 yaitu:

Tabel V. 9 Jenis Gangguan Lokomotif

NO	JENIS GANGGUAN	FREKUENSI
1.	Modul MGEMC	4
2.	ESS1 short	1
3.	Plug kran patah	1
4.	Sambungan kabel ke TM 5 putus	
	terbakar	1
5.	Bocoran air di AEP 3	1

Tabel V.9 Lanjutan

6.	Mur reducer valve ab cs kendor	1
7.	Mur dan baut dalam ADV aus	1
8.	Upnol pada gov Md basah, lepas	1
9.	Inverter FTP terbakar	1
10.	Tekanan tangki bahan bakar turun	1
11.	Ring stt kompresos patah	1
12.	Pipa tangki induk lepas	1
13.	Fuel Pump	3
14.	Roda benjol	2
15.	MCO	1
16.	Suling lok	1
17.	Deadman	1
18.	Gearbox	1
19.	Stator TM 3 jebol	1
20.	Gangguan baterai	2
21.	Tahanan dioda ACPS putus	1
22.	Tenaga lemah	3
JUMLAH	31	

Sumber: Depo Lokomotif Medan, 2022

Berdasarkan table diatas dapat diketahui bahwa:

- Jenis gangguan atau kerusakan lokomotif terbanyak yaitu gangguan Modul MGEMC dengan frekuensi 4 gangguan, kerusakan pada modul MGEMC ini disebabkan naik nya nilai hambatan pada kapasitor.
- 2. Gangguan tenaga lemah yang terjadi yaitu sebanyak 3 frekuensi, ini disebabkan karena sistem kelistrikan atau kabel-kabel pada lokomotif mengalami kenaikan resistansi yang dapat menyebabkan hambatan listrik yang besar sehingga arus tidak mengalir lancar. Selain disebabkan kenaikan resistansi pada kabel gangguan ini juga disebabkan oleh tidak bekerjanya turbocharger secara optimal dalam menyuplai udara keruang silinder untuk proses pembakaran sehingga daya motor diesel menurun.
- 3. Gangguan fuel pamp yang terjadi sebanyak 3 frekuensi, ini disebabkan oleh pompa bahan bakar sudah tidak bekerja karena fuel pump sudah melewati batas dalam penggunaannya.
- 4. Lokomotif yang mengalami gangguan, disebabkan pada saat proses perawatan tidak sesuai dengan ketentuan yang ditetapkan seperti jadwal

perawatan lokomotif yaitu dimana program perawatan tidak sesuai dengan realisasi perawatan yang telah ditentukan.

E. Pemecahan Masalah

1. Gangguan Lokomotif

Pada lokomotif yang mengalami gangguan, dapat dilakukan beberapa upaya untuk meminimalisir kerusakan yang terjadi. Adapun upaya yang dapat dilakukan adalah sebagai berikut:

Tabel V. 10 Tipe Gangguan dan Penanganannya

NO	JENIS GANGGUAN	PENANGANAN GANGGUAN
1.	Modul megmc	Penggantian modul MGEMC
2.	ESS1 short	Ganti ESS 1
3.	Plug kran patah	Normalisasi
4.	Sambungan kabel ke TM 5 putus terbakar	penggantian sambungan kabel
5.	Bocoran air di AEP 3	Kencangkan baut secara berkala
6.	Mur reducer valve ab cs kendor	Kencangkan mur reducer valve secara berkala
1.	Mur dan baut dalam ADV aus	Pemeriksaan dan penggantian baut dalam ADV
8.	Upnol pada gov Md basah, lepas	Keringkan upnol governor
9.	Inverter FTP terbakar	Lakukan pemeriksaan dan penggantian inverter FTP
10.	Tekanan tangki bahan bakar turun	Periksa kompressor
11.	Rng stt kompresos patah	Penggantian packing kompresor
12.	Pipa tangki induk lepas	Normalisasi
13.	Fuel Pump	Periksa dan lakukan pembersihan pada fuel pum
14.	Roda benjol	Normalisasi roda
15.	MCO	Periksa dan penggantian switch MCO
16.	Suling lok	Penggantian membran suling lok
17.	Deadman	Perbaikan dan perawatan pada AVR
18.	Gearbox	Periksa dan pasang tutup gearbox
19.	Stator TM 3 jebol	Penggantian stator TM 3
20.	Gangguan baterai	Penambahan red insulting pada baterai
21.	Tahanan dioda ACPS putus	Penggantian dioda ACPS
22.	Tenaga lemah	Pengecekan turbocharger dan kabel

Dari analisis diatas dipat ditentukan Tindakan untuk meminimalisir gangguan lokomotif yaitu:

- a. Jenis gangguan pada modul MGEMC dapat dilakukan penggantian dan pengecekan terhadap tahanan kapasitor modul MGEMC, dan perlunya perawatan yang intensif karena sulitnya mendapatkan suku cadang ini disebabkan oleh modul MGEMC untuk CC 201 yang sudah tidak diproduksi dan terganti oleh modul CC 206 yang memiliki daya lebih besar.
- b. Pada gangguan tenaga lemah dapat dilakukan pemeriksaan terhadap turbocharger atau melakukan pengecekan pada plunyer dengan membuka dan mengisikan bahan bakar yang kemudian dapat dilihat apakah bahan bakarnya diubah menjadi uap atau masih tetap mengeluarkan bahan bakar. Bahan bakar yang tidak berhasil diubah menjadi uap nantinya bisa bercampur dengan pelumas akan menyebabkan delution HSD.
- c. Kerusakan fuel pamp dapat dilakukan pengecekan dan menganti fuel pamp sesuai dengan masa pemakaiannya.
- d. Pada sistem kelistrikan yang disebabkan oleh gangguan kabel-kabel yang mengalami kenaikan resistensi dapat dilakukan Recabling, yaitu salah satu usaha untuk mencegah gangguan dengan penggantian kabel-kabel dalam sistem kelistrikan di lokomotif. dengan adanya penggantian kabel-kabel tersebut maka dapat mengalirkan arus listrik dengan baik.

2. Ketersediaan Lokomotif Siap Operasi (SO)

Untuk mengurangi gangguan lokomotif yang menyebabkan kekurangan siap operasi lokomotif, maka salah satu cara yang dapat dilakukan adalah dengan memaksimalkan perawatan lokomotif. Jadi, bila lokomotif mengalami kerusakan dan membutuhkan penggantian dapat segera dilakukan di depo. Dengan menyediakan suku cadang di depo, maka kerusakan atau penggantian komponen lokomotif yang mengalami kerusakan dapat segera dilakukan sehingga mengoptimalkan waktu perawatan.

3. Kehandalan

Lokomotif CC 201 sudah melebihi batas toleransi gangguan yang ada. Maka untuk meminimalkan gangguan tersebut, perlu diadakan peningkatan kualitas perawatan lokomotif sesuai chek sheet dan pemeriksaan harian, 1 bulanan, 3 bulanan, 6 bulanan, 12 bulanan sesuai prosedur yang ada dan dilakukan secara rutin agar kerusakan lokomotif yang terjadi tidak berulang kembali terutama pada kerusakan yang sama.

BAB VI

PENUTUP

A. Kesimpulan

Berdasarkan dari hasil analisis dapat ditarik kesimpulan yakni:

- Kinerja lokomotif CC 201 di Divre I Sumatra Utara secara keseluruhan masih bagus, tetapi terkait dengan kehandalan lokomotif yang terjadi selama tahun 2021 sampai dengan Februari 2022 sebesar 116% yang sudah melebihi toleransi gangguan lokomotif, ini mengakibatkan kehandalan lokomotif menurun.
- 2. Penyebab gangguan lokomotif CC 201 yang paling tinggi adalah gangguan MGEMC sebanyak 4 kali, ini bisa disebabkan oleh naiknya nilai hambatan pada kapasitor.
- 3. Recabling, yaitu salah satu usaha untuk mencegah gangguan dengan penggantian kabel-kabel dalam sistem kelistrikan di lokomotif. Dengan adanya penggantian kabel-kabel tersebut maka dapat mengalirkan arus listrik dengan baik.

B. Saran

Berdasarkan analisis dan kesimpulan yang didapatkan, maka dapat diajukan beberapa saran demi peningkatan kinerja lokomotif CC 201 kedepannya. Adapun saran yang didapat diberikan adalah sebagai berikut:

- 1. Metode Recabling dapat dijadikan usulan untuk gangguan sistem kelistrikan pada lokomotif.
- Melakukan pemeriksaan harian, 1 bulanan, 3 bulanan, 6 bulanan, 12 bulanan lokomotif CC 201 sesuai dengan prosedur dan program yang ada. Seperti dengan mengikuti chek sheet yang telah ditentukan dan dilakukan secara rutin dan berkala, agar kerusakan yang sama tidak terjadi berulang kali.

3. Pada kerusakan lokomotif yang terjadi secara berulang agar dilakukan pemeriksaan secara intensif dan meningkatkan pengawasan dalam proses perawatan lokomotif agar dapat meminimalisir gangguan lokomotif pada saaat beroperasi.

DAFTAR PUSTAKA

Undang-Undang Republik Indonesia Nomor 23 Tahun 2007 Tentang
Perkeretaapian.
Keputusan Menteri No. 81 tahun 2000 tentang Sarana Kereta Api
Peraturan Menteri No.153 Tahun 2016 tentang Standar Spesifikasi Teknis Lokomotif Sarana Perkeretaapian
Peraturan Pemerintah No. 56 Tahun 2009 tentang Penyelenggaraan Perkeretaapian
Atmosukarjo, Hartono, 2012. <i>Lokomotif dan Kereta Rel Diesel di Indonesia</i> , Bandung : CV. Mentari Terang Sejahtera
Dwiatmoko, Hermanto. 2016. <i>Pengujian Sarana Perkeretaapian</i> . Jakarta: Kencana
Fitria Dina, Muhni Pamuji. 2015 Sistem Tranmisi Elektrik pada Lokomotif CC 201 di lubuk Linggau, <i>Jurnal Desiminasi Teknologi</i> vol 3 (2)
PT. KAI, 1996. Manajemen QCD II Teknik Manajemen dan Alat Penyelesaian Masalah.

LAMPIRAN

POLITEKNIK TRANSPORTASI DARAT INDONESIA - STTD DIII MANAJEMEN TRANSPORTASI PERKERETAAPIAN TAHUN AKADEMIK 2021/2022

DATA INVENTARISASI LOKOMOTIF

	NOMOR	NOMOR		PEMBUAT		SPESIFIKASI	TAHUN	
NO	SERI	SERI	NEGARA	PABRIK	BERAT	MOTOR	MULAI	USIA LOK
	LAMA	BARU	NEGARA	PADRIK	DEKAT	DIESEL	DINAS	
1	BB 203 02	203 78 01	USA	General Electric Company	78,40 Ton	7 FDL 8	1978	44
2	BB 203 05	203 78 02	USA	General Electric Company	78,40 Ton	7 FDL 8	1978	44
3	BB 203 06	203 78 03	USA	General Electric Company	78,40 Ton	7 FDL 8	1978	44
4	BB 203 07	203 78 04	USA	General Electric Company	78,40 Ton	7 FDL 8	1978	44
5	BB 203 08	203 78 05	USA	General Electric Company	78,40 Ton	7 FDL 8	1978	44
6	BB 302 01	302 70 01	Germany	Henschel	44 Ton	MTU 12 V 396 TC 12	1970	52
7	BB 303 10	303 73 04	Germany	Henschel	42,80 Ton	MTU 12 V 396 TC 12	1973	49
8	BB 303 19	303 75 01	Germany	Henschel	42,80 Ton	MTU 12 V 396 TC 12	1975	47
9	BB 303 20	303 76 01	Germany	Henschel	42,80 Ton	MTU 12 V 396 TC 12	1976	46
10	BB 303 24	303 78 03	Germany	Henschel	42,80 Ton	MTU 12 V 396 TC 12	1978	44
11	BB 303 26	303 78 05	Germany	Henschel	42,80 Ton	MTU 12 V 396 TC 12	1978	44
12	BB 303 27	303 78 06	Germany	Henschel	42,80 Ton	MTU 12 V 396 TC 12	1978	44
13	BB 303 33	303 78 07	Germany	Henschel	42,80 Ton	MTU 12 V 396 TC 12	1978	44
14	BB 303 43	303 84 01	Germany	Henschel	42,80 Ton	MTU 12 V 396 TC 12	1984	38
15	BB 303 44	303 84 02	Germany	Henschel	42,80 Ton	MTU 12 V 396 TC 12	1984	38
16	BB 303 47	303 84 04	Germany	Henschel	42,80 Ton	MTU 12 V 396 TC 12	1984	38

DATA INVENTARISASI LOKOMOTIF

	NOMOR	NOMOR		PEMBUAT	SPES	IFIKASI	TAHUN	USIA LOK
NO	SERI LAMA	SERI BARU	NEGARA	PABRIK	BERAT	MOTOR DIESEL	MULAI DINAS	(TAHUN)
1	CC 201 05	201 77 04	USA	General Electric Company	84 Ton	7 FDL 8	1977	45
2	CC 201 10	201 77 08	USA	General Electric Company	84 Ton	7 FDL 8	1977	45
3	CC 201 50	201 83 12	USA	General Electric Company	84 Ton	7 FDL 8	1983	39
4	CC 201 66	201 83 28	USA	General Electric Company	84 Ton	7 FDL 8	1983	39
5	CC 201 70	201 83 32	USA	General Electric Company	84 Ton	7 FDL 8	1983	39
6	CC 201 76	201 89 04	USA	General Electric Company	84 Ton	7 FDL 8	1989	33
7	CC 201 82	201 89 10	USA	General Electric Company	84 Ton	7 FDL 8	1989	33
8	CC 201 96	201 92 06	USA	General Electric Company	84 Ton	7 FDL 8	1992	30
9	CC 201 15	201 83 37	USA	General Electric Company	84 Ton	7 FDL 8	1983	39
10	CC 201 23	201 83 44	USA	General Electric Company	84 Ton	7 FDL 8	1983	39
11	CC 201 87	201 89 14	USA	General Electric Company	84 Ton	7 FDL 8	1985	37
12	CC 201 12	201 93 02	USA	General Electric Company	84 Ton	7 FDL 8	1983	39
13	CC 201 28	201 99 02	USA	General Electric Company	84 Ton	7 FDL 8	1999	23
14	CC 201 38	201 04 01	USA	General Electric Company	84 Ton	7 FDL 8	1985	37
15	CC 201 41	201 04 04	USA	General Electric Company	84 Ton	7 FDL 8	1985	37
	JUMLAH	15						

DATA PENGGUNAAN LOKOMOTIF

BULAN JANUARI 2022

Nama	Lok															Та	ngg	al														
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
CC 201	7704	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	P1	٧	٧	٧	٧	٧	٧	V
	7708	BY	٧	٧	>	٧	٧	BY	BY	BY	BY	BY	BY	P1	٧	٧	٧	٧	V													
	8312	٧	٧	٧	>	٧	٧	٧	>	٧	>	٧	>	٧	٧	٧	٧	>	P1	٧	٧	>	٧	٧	٧	٧	٧	٧	٧	٧	٧	V
	8328	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	P1	٧	٧	٧	٧	٧	٧	BY													
	8332	BY	٧	٧	٧	٧	٧	>	٧	٧	P1	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	V										
	8904	BY	P1	٧	٧	٧	٧	>	٧	٧	٧	>	٧	٧	٧	٧	٧	٧	٧	٧	٧	V										
	8910	٧	٧	٧	>	٧	٧	P1	>	٧	>	٧	>	٧	٧	٧	٧	>	٧	٧	٧	>	٧	٧	٧	٧	٧	٧	٧	٧	٧	V
	9206	٧	٧	٧	>	٧	٧	٧	>	٧	>	٧	>	>	P1	٧	٧	>	٧	٧	٧	>	٧	٧	٧	٧	BY	BY	BY	BY	BY	BY
	8337	٧	٧	٧	>	٧	٧	٧	>	٧	>	٧	>	>	BY	BY	BY	BY	BY	BY	BY	BY	BY	BY	BY	BY	BY	BY	BY	BY	BY	BY
	8344	٧	٧	٧	>	٧	٧	٧	٧	٧	٧	٧	٧	P1	٧	٧	٧	>	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	V
	8914	٧	٧	٧	>	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	P1	٧	V
	9302	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	7	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	P1	٧	V	V
	9902	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	V
	0401	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	P1	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	V
	0404	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	P1	٧	٧	٧	٧	٧	٧

DATA PENGGUNAAN LOKOMOTIF

BULAN FEBRUARI 2022

Nama	a Lok														Tan	ggal													
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
CC 201	7704	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
	7708	BY	BY	BY	BY	BY	BY	BY	BY	BY	BY	BY	BY	BY	BY	BY	BY	BY	P1	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
	8312	٧	٧	٧	٧	٧	٧	٧	٧	٧	P1	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
	8328	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
	8332	BY	BY	BY	BY	BY	BY	BY	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	P1	BY	BY	BY	BY	BY
	8904	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	P1	٧	٧	٧	٧	٧	٧	BY	BY	BY	BY	BY
	8910	٧	P1	٧	٧	٧	٧	٧	>	٧	٧	٧	٧	>	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	>	V
	9206	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	P1	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	V
	8337	٧	P72	P72	P72	P72	P72	P72	P72	P72	P72	P72	P72	P72	P72	P72													
	8344	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	P1	٧	٧	٧	٧	٧	٧	٧	٧	٧
	8914	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
	9302	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	P1	٧	٧	٧	٧
	9902	V	٧	٧	P1	V	٧	٧	٧	V	V	V	٧	٧	٧	٧	٧	٧	V	V	V	V	٧	V	٧	٧	V	٧	V
	0401	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	P1	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	V
	0404	٧	٧	V	٧	٧	٧	٧	٧	٧	V	V	٧	٧	V	V	V	V	٧	V	V	P1	V	٧	٧	V	٧	٧	V

DATA PENGGUNAAN LOKOMOTIF

BULAN MARET 2022

Nama	a Lok															Tang	gal														
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
CC 201	7704	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	P1	٧	٧	٧	٧
	7708	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	P1	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
	8312	٧	٧	٧	٧	٧	P1	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
	8328	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	P1	٧	٧	٧
	8332	٧	>	٧	٧	٧	٧	٧	>	>	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	>	٧	٧	٧	٧	>	٧	٧	٧	٧
	8904	BY	BY	٧	٧	٧	٧	٧	>	>	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	P1	>	٧	٧	٧	٧	>	٧	٧	٧	٧
	8910	٧	P1	٧	٧	٧	٧	٧	>	>	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	>	٧	٧	٧	٧	>	٧	٧	٧	٧
	9206	٧	>	٧	٧	٧	٧	٧	>	>	٧	٧	٧	٧	٧	٧	٧	٧	P1	٧	٧	>	٧	٧	٧	٧	>	٧	٧	٧	٧
	8337	P72	P72	P72	P72	P72	P72	P72	P72	P72	P72	P72	P72	P72	P72	٧	٧														
	8344	٧	>	٧	٧	٧	٧	٧	>	>	٧	٧	٧	٧	٧	٧	٧	٧	٧	P1	٧	>	٧	٧	٧	٧	>	٧	٧	٧	٧
	8914	٧	>	٧	٧	٧	٧	٧	>	>	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	>	P1	٧	٧	٧	>	٧	٧	٧	٧
	9302	٧	٧	V	V	٧	V	٧	٧	٧	٧	V	V	V	V	٧	V	V	V	V	V	٧	٧	V	V	P1	٧	V	V	٧	٧
	9902	٧	٧	V	P1	٧	V	٧	٧	٧	٧	٧	V	V	V	٧	V	٧	V	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
	0401	٧	٧	V	٧	٧	V	٧	P1	٧	٧	٧	V	V	V	٧	V	٧	V	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
	0404	BY	>	٧	P1	٧	٧	٧	٧	٧	٧	٧	٧	٧	>	٧	٧	٧	٧	٧	٧	٧	٧	٧							

DATA GANGGUAN LOKOMOTIF

NO	TANGGAL	NOMOR LOK	LINTAS	LOKASI GANGGUAN	GANGGUAN
1	04-03-2021	CC 201 8914	LBU-SIR	Labuan	Modul MGEMC
2	16-03-2021	CC 201 8344	PRA-BLW	Bandar Tinggi	ESS1 short
3	19-03-2021	CC 201 8914	PHA-BLW	Teluk Dalam	Modul MGEMC
4	20-03-2021	CC 201 9902	RAP-MDN	Paminke	Plug kran patah
5	23-03-2021	CC 201 8904	RAP-BLW	Lima Puluh	Sambungan kabel ke TM 5 putus terbakar
6	28-03-2021	CC 201 8914	MDN-RAP	Medan	Bocoran air di AEP 3
7	04-04-2021	CC 201 8332	SIR-MDN	Araskabu	Mur reducer valve ab cs kendor
8	07-04-2021	CC 201 9302	BLW-PHA	Mambang Muda	Mur dan baut dalam ADV aus
9	23-04-2021	CC 201 8910	KIS-BLW	Bandar Tinggi	Upnol pada gov Md basah, lepas
10	23-04-2021	CC 201 8344	MDN-RAP	Telukmengkudu	Inverter FTP terbakar
11	26-04-2021	CC 201 8910	MDN-SIR	Lubukpakam	Tekanan tangki bahan bakar turun
12	28-04-2021	CC 201 8914	SIR-LBU	Siantar	Ring stt kompresor patah
13	05-05-2021	CC 201 7704	MDN-SIR	Dolokmerangir	Modul MGEMC
14	18-05-2021	CC 201 8312	MDN-RAP	Teluk Dalam	Pipa tangki induk lepas
15	24-05-2021	CC 201 8328	PRA-BLW	Tanjung Balai	Tenaga lemah
16	27-05-2021	CC 201 8337	MDN-TNB	Tebing Tinggi	Kabel Fuel Pump Putus
17	28-05-2021	CC 201 0401	SIR-LBU	Bajalinggei	Fuel pump
18	03-06-2021	CC 201 8344	RAP-BLW	Rantau Prapat	Fuel pum tidak kerja

DATA GANGGUAN LOKOMOTIF

NO	TANGGAL	NOMOR LOK	LINTAS	LOKASI GANGGUAN	GANGGUAN
19	11-06-2021	CC 201 0404	MDN-TNB	Lubukpakam	Roda benjol
20	13-06-2021	CC 201 8904	RAP-MDN	Rampah	MCO TM 6
21	14-06-2021	CC 201 8332	MDN-RAP	Perbaungan	Roda benjol
22	22-06-2021	CC 201 9902	RAP-MDN	Kisaran	Suling lok
23	06-08-2021	CC 201 8312	MDN-SIR	Bandar Khalifah	Tenaga lemah
24	18-08-2021	CC 201 7704	PRA-BLW	Bandar tinggi	Tenaga lemah
25	02-09-2021	CC 201 0401	MDN-TNB	Lubukpakam	Deadman
26	21-12-2021	CC 201 8904	TNB-MDN	Tebing Tinggi	Gearbox
27	25-01-2022	CC 201 8334	KIS-BLW	Bandar Tinggi	Modul MGEMC
28	02-02-2022	CC 201 8910	MDN-RAP	Medan	Stator TM 3 jebol
29	10-02-2022	CC 201 0401	MDN-RAP	Seibejangkar	Gangguan baterai
30	16-02-2022	CC 201 8312	BLW-PHA	Araskabu	Gangguan baterai
31	26-02-2022	CC 201 8337	BLW-PHA	Lubukpakam	Tahanan dioda ACPS putus

DATA PERAWATAN LOKOMOTIF

		Tangg	Tanggal Program dan Realisasi Janu P1 P3 P6 P3								gal Pr	ogram	dan R	ealisa:	si Fe	brua	ari	Tang	ggal Pr	ogram	dan	Realis	asi N	√are	t:
Nomor	Lok	Р	1	P	3	P	6	Р	12	Р	1	P	3	P6	5	P:	12	Р	1	P3	-	P6		P1	.2
		Р	R	Р	R	Р	R	Р	R	Р	R	Р	R	Р	R	Р	R	Р	R	Р	R	Р	R	Р	R
CC 201	7704	24	24							23	26								31	29					
	7708	29	26															2	18						
	8312	22	18							19	16								10	17					
	8328	14	11								26			26					29			7			
	8332	20	20							21	22								23			23			
	8904	4	12								14	11							17	15					
	8910	7	7							7	2								2	1					
	9206	21	14								15	16							11	16					
	8337									2	12														
	8344	17	13							14	21								19	24					
	8914	31	29								22	22							28	25					
	9302	28	28								21	25							24	25					
	9902	3	10										11	10				12	4						
	0401	18	15							15	14							-	15	14					
	0404	26	25							24	18								21	18					

DATA PERAWATAN LOKOMOTIF

No	Pemeriksaan Awal	Satuan	Standar	Hasil Pengukuran	Keterangan
1.	Periksa tegangan baterai pada saklar utama	Volt	72-75	74	
2.	Periksa tekanan minyak pelumas motor diesel	Psi	20-170	20-120	
3.	Periksa tekanan minyak bahan bakar	Psi	40	40	
4.	Periksa tekanan angin penyeimbang	Psi	70	70	
5.	Periksa tekanan angin saluran pipa abar	Psi	70	70	
6.	Periksa tekanan independent brake	Psi	50	50	
7.	Periksa fungsi:				
	a. Bel	-		berfungsi	
	b. Penghapus kaca	-		berfungsi	
	c. Klakson	-		berfungsi	
	d. Lampu sorot	-	berfungsi	berfungsi	
	e. Lampu semboyan	-		berfungsi	
	f. Lampu kabin	-		berfungsi	
	g. Lampu kabut	-		berfungsi	
8.	Periksa suara asing dan bocoran pada putaran notch	-	tidak ada suara	tidak ada suara	
9.	Periksa level minyak governor motor diesel	-	diantara dua	diantara dua garis	
			garis gelas ukur	gelas ukur	
10.	Periksa indikator filter udara motor diesel	-	berfungsi	berfungsi	
11.	Periksa kerja governor kompresor	Psi	120-125	120	
12.	Periksa fungsi safety valve tangka induk	Psi	145-155	155	
13.	Periksa kondisi:				
	a. Window filter	-	bersih	bersih	
	b. Kebocoran udara pada traksi motor	-	tidak bocor	tidak bocor	

DATA PERAWATAN LOKOMOTIF

No	Pemeriksaan Awal	Satuan	Standar	Hasil Pengukuran	Keterangan
14.	Periksa kondisi GPS speedometer	=	berfungsi	berfungsi	
15.	Periksa kondisi keausan kontaktip	-	bersih	bersih	
16.	Periksa kerja:				
	a. Deadman pedal	-	berfungsi	berfungsi	
	Modul		baik	baik	
	Switch		ganti	ganti	
	Pegas		ganti	ganti	
	Gasket		ganti	ganti	
	Buzzer		berfungsi	berfungsi	
	Injak		berfungsi	berfungsi	
	Lepas		berfungsi	berfungsi	
	b. Emergency push buton	=	berfungsi	berfungsi	
17.	Ganti wifer blade	Buah	4		
18.	Periksa komponen:				
	a. Automatic brake	=			
	b. Independent brake	=	bersih dan	bersih dan lumasi	
	c. P2A application valve	-	lumasi	Dersiii uaii iuillasi	
	d. Relay valve	-			

KARTU ASISTENSI

PROGRAM STUDI DIPLOMA III MANAJEMEN TRANSPORTASI PERKERETAAPIAN TAHUN AKADEMIK 2021/2022

NAMA

: FAJRI HANIF

NOTAR

: 1903030

DOSEN : 1. PIANTO BILI PRI HATMANTYO, ST. M.SC

2. Ir. MUHALDJETO. MM

JUDULKKW: EVALUASI KINERJA LOKOMOTIFAZOI

DI DIURE I SUMATERA UTARA

NO	TGL	KETERANGAN	PARAF	NO	TGL	KETERANGAN	-PARAF
١.	087 - 2021	Pengajuan Bab 1-4	Qt	١.	26/ (06-202	Pengajuon Bob 1-4	Si
7.	०५०१- रवा	i.Perbaikan Bab 1-4 2. Perbaikan tata naskah	St	2.	0\$/07-1027	Porbaikan Bab 1 - 2	Si
3.	08/67-2022	Pembahasan Revisi Bab 1-4	St	3.	18/07-202	Perbaikan Bob 3-4	n

NO.	TGL	KETERANGAN	PARAF:	NO	* TGI;	KETERANGAN	PARAF
4.	20/07-202	Pembahasan analisis Bob S	A	4.	22/ 101-2022	Porbaikan Bab I	ર્ગ
5.	-	1 Pembohasan Babs dan Bab G	A	5.		Perbaikan Bab 6	Sj.
6.	3%7-2021	1. Pombekalan persiapan Sidang 2. Pembahacan maten Presentaci	H	6.	29/ /01-2021	Pembekalan moteri untuk sidang	Sq.
				-			