PENERAPAN TARIF PROGRESIF PARKIR *ON STREET*PADA KAWASAN *CENTRAL BUSINESS DISTRICT*KOTA MAGELANG

APPLICATION OF PROGRESSIVE RATES FOR ON STREET PARKING IN THE CENTRAL BUSINESS DISTRICT AREA OF MAGELANG CITY

Wina Aulia^{1,*}, I Made Arka Hermawan², Yanuar Dwi Herdiyatno³

Program Studi Sarjana Terapan Transportasi Darat Politektik Transportasi Darat Indonesia-STTD Jl. Raya Setu No. 89 Bekasi Jawa Barat 17520, Indonesia

*E-mail: winaaulia2125@gmail.com

Abstract

Central Business District area of Magelang City is a center for trade and entertainment activities for the Magelang community and its surroundings. The dominance of use a private vehicles and public behavior towards the use of parking space facilities with a long duration has an impact on the provision of parking space facilities and traffic performance. The addition parking spaces continuously is not solution to solve the problem of parking space requirements. Therefore, policies and strategies are needed as Transport Demand Management in reducing the demand for parking spaces. This study was conducted to findout what scenarios can reduce the demand for parking spaces represented by changes in the parking index and traffic performance. The approach in this research uses stated preference method using binary logit analysis and road network performance using transportation modeling applications to obtain the optimal scenario. From the results of the study obtained 2 scenarios with a parking index <100% with a high probability and have a significant change in traffic performance from the existing conditions. So with optimistic conditions, a scenario with an increase of Rp 2.000,- for wheels 2 and for wheels 4 of Rp 5.000,- with an increase of Rp 2.500,- every 45 minutes. However, if the scenario is not optimal, then under pessimistic conditions, a scenario with an initial tariff of Rp 4.000,- can be applied, with an increase of Rp 4.000,- for 2 wheels and Rp 8.000,- for 4 wheels with an increase of Rp 8.000,- every 30 minutes.

Keyword: binary logistic; optimistic and pessimistic scenarios; parking index; progressive rates; road network performance; stated preference.

Abstrak

Kawasan Central Bussiness District Kota Magelang merupakan pusat kegiatan perdagangan dan hiburan untuk masyarakat Magelang dan sekitarnya. Dominasi penggunaan kendaraan pribadi serta perilaku masyarakat terhadap penggunaan fasilitas ruang parkir dengan durasi yang panjang berdampak terhadap penyediaan fasilitas ruang parkir serta kinerja lalu lintas. Penambahan ruang parkir secara terus-menerus bukan solusi untuk menyelesaikan permasalahan terhadap kebutuhan ruang parkir. Maka diperlukan kebijakan dan strategi sebagai Transport Demand Management dalam menekan angka permintaan terhadap ruang parkir. Penelitian ini dilakukan untuk mengetahui skenario seperti apa yang dapat menekan permintaan ruang parkir yang diwakili oleh perubahan indeks parkir dan kinerja lalu lintas. Pendekatan dalam penelitian menggunakan metode stated preference dengan menggunakan analisis logit biner dan kinerja jaringan jalan menggunakan aplikasi pemodelan transportasi untuk mendapatkan skenario yang optimal. Dari hasil penelitian didapatkan 2 skenario dengan indeks parkir < 100% dengan probabilitas yang tinggi dan memiliki perubahan kinerja lalu lintas secara signifikan dari kondisi eksisting. Maka dengan kondisi optimis dapat diterapkan skenario dengan tarif awal sebesar Rp 2.000,- dengan peningkatan Rp 2.000,- untuk roda 2 dan untuk roda 4 sebesar Rp 5.000,dengan peningkatan Rp 2.500,- setiap 45 menit. Namun jika pada skenario tersebut belum optimal maka dengan kondisi pesimis dapat diterapkan skenario dengan tarif awal sebesar Rp 4.000,- dengan peningkatan Rp 4.000,untuk roda 2 dan untuk roda 4 sebesar Rp 8.000,- dengan peningkatan Rp 8.000,- setiap 30 menit.

Kata-kunci: indeks parkir; kinerja jaringan jalan; logit biner; skenario optimis dan pesimis; stated preference; tarif progresif.

PENDAHULUAN

Tingginya pergerakan pada Kawasan Central Business District di Kota Magelang sebesar 58.284 trip/hari yang didominasi 95% oleh kendaraan pribadi berdampak kepada kebutuhan ruang parkir yang harus disediakan. Kawasan ini merupakan pusat aktivitas masyarakat Kota Magelang dan sekitarnya dalam kegiatan perdagangan, jasa, usaha dan tempat rekreasi untuk sebagian masyarakat. Penggunaan kendaraan pribadi yang mendominasi diikuti perilaku masyarakat dalam penggunaan ruang parkir dengan rentang waktu rata-rata mencapai 120 menit menyebabkan tingkat pergantian parkir hanya 1,9 Kend/SRP/3Jam. Perilaku tersebut menyebabkan timbulnya pelanggaran seperti parkir berlapis, perubahan sudut parkir dan penggunaan badan jalan yang tidak seharusnya dimanfaatkan untuk fasilitas parkir. Hal tersebut menciptakan hambatan terhadap kinerja lalu lintas, khususnya pada jam puncak kawasan tersebut. Lahan yang sangat terbatas pada kawasan perkotaan menyebabkan penambahan lokasi serta ruang parkir secara terus-menerus bukan hal efektif. Dengan permasalahan tersebut maka perlu adanya kebijakan yang dilakukan sebagai bentuk Transport Demand Management (TDM) yaitu kebijakan tarif parkir progresif untuk mengubah serta menekan penggunaan ruang parkir dengan durasi lama sehingga dapat mengurangi pelanggaran yang terjadi dan meminimalisir hambatan terhadap kinerja lalu lintas pada kawasan tersebut.

TINJAUAN PUSTAKA

Parkir Badan Jalan (On Street Parking)

Menurut Undang-Undang No. 22 Tahun 2009 tentang Lalu Lintas dan Angkutan Jalan, pengertian parkir adalah keadaan kendaraan berhenti atau tidak bergerak untuk beberapa saat dan ditinggalkan pengemudinya dan fasilitas parkir adalah lokasi yang digunakan untuk pemberhentian kendaraan yang bersifat sementara. Sedangkan parkir badan jalan adalah jenis parkir yang memanfaatkan tepi jalan umum untuk fasilitas parkir tersebut tanpa melakukan pelebaran jalan.

Indeks Parkir

Indeks parkir menyatakan persentase ruang yang ditempati kendaraaan parkir dengan ruang parkir yang disediakan. (Ahmad Munawar, 2004).

Manajemen Kebutuhan Lalu Lintas

Menurut Peraturan Pemerintah Republik Indonesia No. 32 Tahun 2011, tentang Manajemen dan Rekayasa, Analisis Dampak, serta Manajemen Kebutuhan Lalu Lintas pasal 73 menyebutkan pembatasan ruang parkir dapat dilakukan dengan beberapa pembatasan seperti pembatasan waktu parkir, durasi parkir, tarif parkir, kuota parkir dan/atau lokasi parkir.

Tarif Progresif

Tarif parkir merupakan alat untuk mengendalikan jumlah kendaraan yang parkir, semakin tinggi tarifnya maka diharapkan jumlah pengguna ruang parkir berkurang. Tarif progresif merupakan tarif dengan sistem kelipatan waktu, dimana semakin lama waktu parkir maka biaya parkir akan semakin mahal. Sistem tarif ini diawali dengan penerapan tarif *flat* pada satu atau dua jam pertama setelah itu biaya parkir bertambah dengan bertambahnya waktu.

Stated Preference

Metode *Stated Preferance* merupakan suatu teknik pendekatan yang digunakan untuk mendapatkan pendapat atau preferensi responden mengenai pilihannya terhadap suatu set opsi (choice set) yang telah dirancang dan disesuaikan dengan kondisi lapangan. Dalam penelitian ini untuk mengukur preferensi digunakan metode rating berdasarkan tanggapan masyarakat.

Kombinasi Variabel

Dalam menentukan kombinasi variabel maka dilakukan desain eksperimental terlebih dahulu. Desain eksperimental merupakan ciri dari teknik *stated preference* sebagai hipotesis yang disajikan kepada responden berdasarkan kombinasi variabel yang telah ditentukan. Dalam analisis kombinasi variabel ini digunakan perhitungan *full factorial design* untuk menghasilkan kombinasi berdasarkan level atribut yang telah ditentukan.

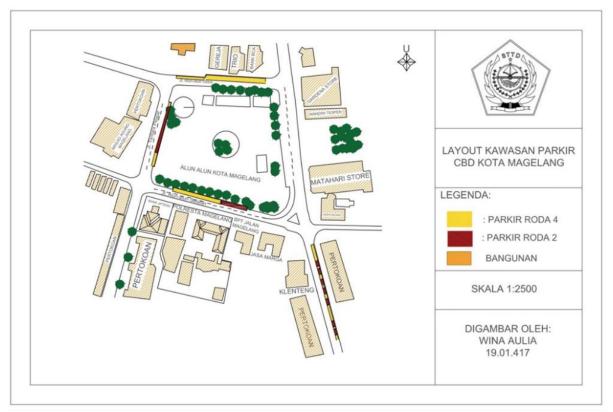
Kondisi Optimis dan Pesimis

Kondisi optimis dan pesimis yang dimaksud pada penelitian ini adalah keputusan parkir oleh masyarakat berdasarkan preferensi pilihan terhadap pilihan yang ditawarkan. Kondisi optimis menyatakan para respon yang memilih ragu – ragu dikelompokkan atau dianggap tidak akan memilih untuk parkir jika diterapkan skenario pilihan tarif tersebut. Sedangkan kondisi pesimis menyatakan para respon yang memilih ragu – ragu dikelompokkan atau dianggap tetap akan memilih untuk parkir jika diterapkan skenario pilihan tarif tersebut.

Regresi Logistik Biner

Regresi logistik biner (binomial) salah satu pendekatan model dalam regresi logistik dimana variabel dependentnya berskala dikotomi (biner). Bilangan biner menggambarkan kategori data yang saling bertolak belakang seperti "ya atau tidak" dan "sukses atau gagal" dengan skala terdiri dari 0 dan 1.

Kinerja Lalu Lintas


Pengukuran kinerja lalu lintas berdasarkan Manual Kapasitas Jalan Indonesia (MKJI,1997). Tingkat pelayanan pada suatu ruas jalan dan simpang berpedoman pada PM. No. 96 Tahun 2015.

METODELOGI PENELITIAN

Penelitian ini merupakan penelitian kuantitatif berdasarkan data primer dan sekunder yang diperoleh dari hasil pengamatan lapangan dan instansi terkait. Penelitian ini diawali dengan penentuan sampel dan kombinasi variabel untuk nantinya dapat mengukur preferensi masyarakat. Metode yang digunakan dalam analisis penelitian ini diawali dengan melakukan pengujian parameter, penentuan probabilitas dengan menggunakan analisis regresi logistik, perhitungan perubahan indeks parkir, rekomendasi skenario berdasarkan perubahan kinerja lalu lintas dengan menggunakan aplikasi pemodelan transportasi dan implementasi dari skenario tarif progresif.

Lokasi Penelitian

Wilayah kajian penelitian ini adalah ruas jalan yang dimanfaatkan sebagai fasilitas parkir onstreet serta simpang yang terdampak akibat hambatan samping yang ditimbulkan oleh parkir badan jalan pada Kawasan *Central Business District* Kota Magelang.

Gambar 1. Lokasi Penelitian

Berikut variabel respon (dependent) dan variabel prediktor (independent) untuk kendaraan roda 2 dan roda 4 yang diberikan kode sebagai kategori dalam pengolahan analisis regresi logistik.

Tabel 1. Variabel Penelitian

Tabel 1. Variabel i Chentian								
	Variabel	Keterangan						
	variabei	Roda 2	Roda 4					
Variabel Y	Vanutusan Darkin	0 = Tidak Parkir	0 = Tidak Parkir					
	Keputusan Parkir	1 = Pasti Parkir	1 = Pasti Parkir					
	Touif David de Dautaure (V1)	0 = 2000	0 = 5000					
	Tarif Periode Pertama (X1)	1 = 4000	1 = 8000					
	Tarif Periode Berikutnya	0 = 1/2 X1	0 = 1/2 X1					
Variabel X	(X2)	1 = X1	1 = X1					
variabei A		0 = 15 Menit	0 = 15 Menit					
	Duraci Panaona (V2)	1 = 30 Menit	1 = 30 Menit					
	Durasi Rencana (X3)	2 = 45 Menit	2 = 45 Menit					
		3 = 60 Menit	3 = 60 Menit					

Selanjutnya variabel – variabel prediktor (x) tersebut akan dipasangkan untuk mengetahui jumlah kombinasi eksperimental pilihan (choice set) berdasarkan perhitungan full factorial design. Berikut perhitungan dan tabel hasil kombinasi dari variabel – variabel tersebut.

Kombinasi = Jumlah pilihan tarif pertama (2) x Jumlah pilihan tarif berikutnya (2) x Jumlah.pilihan durasi rencana penerapan tarif progresif (4) = $2 \times 2 \times 4 = 16$ kombinasi

Tabel 2. Penyajian Kombinasi Antar Variabel

10001211	enjajian reen	ie iiiasi i iiitai	, al 100 01
Skenario	Tarif 1	Tarif 2	Durasi
Skenario 1	X1	0.5X1	15 Menit
Skenario 2	X1	0.5X1	30 Menit
Skenario 3	X1	0.5X1	45 Menit
Skenario 4	X1	0.5X1	60 Menit
Skenario 5	X1	X1	15 Menit
Skenario 6	X1	X1	30 Menit
Skenario 7	X1	X1	45 Menit
Skenario 8	X1	X1	60 Menit
Skenario 9	X2	0.5X1	15 Menit
Skenario 10	X2	0.5X1	30 Menit
Skenario 11	X2	0.5X1	45 Menit
Skenario 12	X2	0.5X1	60 Menit
Skenario 13	X2	X1	15 Menit
Skenario 14	X2	X1	30 Menit
Skenario 15	X2	X1	45 Menit
Skenario 16	X2	X1	60 Menit

Teknik perhitungan sampel minimum pada penelitian ini menggunakan metode slovin dari volume pengguna fasilitas parkir roda 2 dan roda 4 seluruh parkir on street dengan error margin sebesar 10%. Berikut perhitungan untuk menentukan sampel minimum : sampel

roda 2 (n) =
$$\frac{2315}{1+2315.0,1^2} = 96$$

sampel roda 4 (n) = $\frac{290}{1+290.0,1^2} = 74$

Berdasarkan perhitungan sampel minimum didapatkan sampel untuk pengguna roda 2 sebesar 96 responden dan untuk pengguna roda 4 sebesar 74 responden.

HASIL DAN PEMBAHASAN

Pada analisa preferensi dibuat 2 (dua) kondisi pada masing — masing pengguna berdasarkan jenis kendaraan yang digunakan. Dimana pada saat wawancara diberikan 3 pilihan kemudian pada analisa dikelompokkan berdasarkan kondisi optimis dan pesimis.

Tabel 3. Kondisi Optimis dan Pesimis

Kondisi Optimis	Kondisi Pesimis
Tidak Parkir	Pasti Parkir
Ragu – Ragu Parkir	Ragu – Ragu Parkir

1. Multikolinieritas

Sebelum membentuk model regresi logistik maka perlu dilakukan pengujian multikolinieritas dengan menggunakan nilai *Tolerance* atau nilai *Variance Inflation Factors* (VIF). Berikut dapat dilihat nilai *Tolarance* dan VIF pada pada masing – masing kondisi.

Tabel 4. Nilai VIF dan Tolarance Variabel Independent Roda 2

Variabel	Collinearity Skenario		Collinearity Statistics Skenario Pesimis		
	Tolerance	VIF	Tolerance	VIF	
Tarif Dasar (X1)	1.000	1.000	1.000	1.000	
Tarif Berikutnya (X2)	1.000	1.000	1.000	1.000	
Durasi (X3)	1.000	1.000	1.000	1.000	

Tabel 5. Nilai VIF dan Tolarance Variabel Independent Roda 4

Variabel	Collinearity Skenario		Collinearity Statistics Skenario Pesimis		
	Tolerance	VIF	Tolerance	VIF	
Tarif Dasar (X1)	1.000	1.000	1.000	1.000	
Tarif Berikutnya (X2)	1.000	1.000	1.000	1.000	
Durasi (X3)	1.000	1.000	1.000	1.000	

Berdasarkan tabel diatas dapat dilihat bahwasanya nilai toleransi dari variabel oleh skenario optimis dan pesimis berada > 0,010 dan nilai VIF <10. Hal ini menandakan masing – masing variabel *independent* tidak terjadi multikolinieritas atau tidak saling berkorelasi sehingga variabel – variabel tersebut dapat digunakan.

2. Pengujian Kesesuaian Model

Sebelum dibentuknya model regresi logistik maka beberapa penyesuaian atau pengujian perlu dilakukan agar model yang dibangun dapat digunakan untuk memprediksi dengan baik. Berikut dapat dilihat hasil analisis menggunakan Aplikasi IBM SPSS 16 terhadap data – data kondisi optimis dan pesimis responden pengguna fasilitas parkir roda 2 (dua) dan roda 4 (empat).

Tabel 6. Hasil Uji Kelayakan Model

Pengguna	Keterangan	Nagerkerke R Square	%
Roda 4	Skenario Optimis	.314	31%
Koua 4	Skenario Pesimis	.231	23%
Dada 1	Skenario Optimis	.280	28%
Roda 2	Skenario Pesimis	.210	21%

Pada tabel diatas dilakukan analisis uji kelayakan model (goodnes of fit test) dengan menggunakan tabel Hosmer and Lemeshow Goodness of Fit maka diperoleh nilia signifikan hasil uji kelayakan model > 0,05 yang menunjukkan bahwa model regresi yang terbentuk mampu memprediksi nilai observasi dan cocok dengan data observasinya hal ini

menunjukkan tidak akan ada perbedaan antara klasifikasi yang diamati dengan yang diprediksi. Maka model regresi yang digunakan layak dipakai untuk analisis selanjutnya.

Tabel 7. Hasil Uji Simultan

Pengguna	Keterangan	<u> </u>	<u>, </u>	Chi-square	df	Sig.
			Step	358.617	3	.000
	Skenario Optimis	Step 1	Block	358.617	3	.000
Roda 4			Model	358.617	3	.000
Roda 4			Step	246.229	3	.000
	Skenario Pesimis	Step 1	Block	246.229	3	.000
			Model	246.229	3	.000
		Step 1	Step	359.728	3	.000
	Skenario Optimis		Block	359.728	3	.000
Roda 2			Model	359.728	3	.000
Roua 2			Step	236.837	3	.000
	Skenario Pesimis	Step 1	Block	236.837	3	.000
			Model	236.837	3	.000

Pada tabel diatas dilakukan pengujian variabel secara simultan untuk melihat pengaruh variabel independent terhadap variabel dependent secara bersama – sama. Dapat dilihat bahwa seluruh skenario untuk pengguna fasilitas parkir roda 2 dan roda 4 seluruh variabel independenya berpengaruh terhadap variabel dependenya dengan nilai signifikansi sebesar 0,000. Nilai 0,000 < 0,05 menyatakan bahwa variabel independenya secara bersama – sama berpengaruh terhadap variabel *dependent*.

Tabel 8. Hasil Uji Parsial

Pengguna	Keteranga	n	В	S.E.	Wald	df	Sig.	Exp(B)
		X1	-1.665	0.135	152.933	1	0.000	0.189
	Kondisi	X2	0.569	0.129	19.517	1	0.000	0.566
	Optimis	X3	0.801	0.062	164.582	1	0.000	2.227
Dodo 4		Constant	-0.688	0.135	26.068	1	0.000	0.503
Roda 4		X1	-1.060	0.131	65.720	1	0.000	0.346
	Kondisi Pesimis	X2	-0.478	0.128	13.906	1	0.000	0.620
		X3	0.757	0.062	149.781	1	0.000	2.131
		Constant	0.543	0.134	16.543	1	0.000	1.722
		X1	-1.553	0.120	167.338	1	0.000	0.212
	Kondisi	X2	-0.744	0.117	40.286	1	0.000	0.475
	Optimis	X3	0.657	0.055	143.011	1	0.000	1.930
Roda 2		Constant	-0.118	0.121	0.956	1	0.000	0.889
Roua 2		X1	-1.287	0.133	94.178	1	0.000	0.276
	Kondisi Pesimis	X2	-0.637	0.128	24.774	1	0.000	0.529
		X3	0.627	0.060	107.921	1	0.000	1.872
		Constant	1.291	0.140	85.038	1	0.000	3.637

Berdasarkan tabel diatas setiap jenis kondisi memiliki 3 variabel *independent* yang sama dengan uji parsial menggunakan *wald test* dinyatakan semua variabel tersebut bernilai signifikan < 0.05 maka keputusannya H_0 ditolak. Maka arti dari keseluruhan nilai signifikan pada tabel diatas menyatakan setiap variabel yang digunakan yaitu x_1 , x_2 dan x_3 masing – masing berpengaruh terhadap variabel *dependent* yaitu keputusan untuk parkir.

3. Model Regresi Logistik

Berdasarkan pengujian signifikan yang telah dilakukan secara parsial dan silmutan pada **Tabel 7** dan **8** seluruh variabel *independent* yaitu variabel x_1 , x_2 dan x_3 dapat digunakan dalam membentuk model regresi logistik biner. Sehingga didapatkan 4 model regresi logistik biner yang terbentuk :

$$P(Y = 1) = \left(\frac{1}{1 + e^{-(\beta^0 + \beta^1 X^1 + \dots + \beta_n X_n}}\right)$$

a. Kondisi Optimis (R4)

$$g(x) = -0.688 - 1,665X1 + 0,569X2 + 0,801X3$$

$$P(Y=1) = \left(\frac{1}{1 + e^{-(-0.688 - 1.665X1 + 0.569X2 + 0.801X3}}\right)$$

b. Kondisi Pesimis (R4)

$$g(x) = 0.543 - 1.060X1 - 0.478X2 + 0.757X3$$

$$P(Y=1) = \left(\frac{1}{1 + e^{-(0.543 - 1.060X1 - 0.478X2 + 0.757X3}}\right)$$

c. Kondisi Optimis (R2)

$$g(x) = -0.118 - 1.553X1 - 0.744X2 + 0.657X3$$

$$P(Y=1) = \left(\frac{1}{1 + e^{-(-0.118 - 1.553X1 - 0.744X2 + 0.657X3}}\right)$$

d. Kondisi Pesimis (R2)

$$g(x) = 1,291 - 1,287X1 - 0,637X2 + 0,627$$

$$P(Y=1) = \left(\frac{1}{1 + e^{-(1,291 - 1,287X1 - 0,637X2 + 0,627X3}}\right)$$

Setelah didapatkan persamaan probabilitas untuk masing – masing kondisi, maka selanjutnya dilakukan subtitusi berdasarkan kode dari setiap kategori. Maka dihasilkan probabilitas dari masing – masing kondisi skenario sebagai berikut :

Tabel 9. Probabilitas Pengguna Roda 4

Skenario	X1 X2			Х3		Kondisi Optimis		Kondisi Pesimis		
No	Tarif	Kode	Tarif	Vodo	Durasi	Kode	bo+b1X1+ Probabilitas		bo+b1X1+ Probabilitas	
	Pertama	Koue	Berikutnya	Kode	(Menit)	Koue	b2X2+b3X3	(%)	b2X2+b3X3	(%)
1	5000	0	2500	0	15	0	-0.69	0.33	0.54	0.63
2	5000	0	2500	0	30	1	0.11	0.53	1.3	0.79
3	5000	0	2500	0	45	2	0.91	0.71	2.06	0.89
4	5000	0	2500	0	60	3	1.71	0.85	2.81	0.94
5	5000	0	5000	1	15	0	-1.26	0.22	0.06	0.52
6	5000	0	5000	1	30	1	-0.46	0.39	0.82	0.69
7	5000	0	5000	1	45	2	0.34	0.59	1.58	0.83
8	5000	0	5000	1	60	3	1.14	0.76	2.34	0.91
9	8000	1	4000	0	15	0	-2.35	0.09	-0.52	0.37
10	8000	1	4000	0	30	1	-1.55	0.17	0.24	0.56
11	8000	1	4000	0	45	2	-0.75	0.32	1	0.73
12	8000	1	4000	0	60	3	0.05	0.51	1.75	0.85
13	8000	1	8000	1	15	0	-2.92	0.05	-1	0.27
14	8000	1	8000	1	30	1	-2.12	0.11	-0.24	0.44
15	8000	1	8000	1	45	2	-1.32	0.21	0.52	0.63
16	8000	1	8000	1	60	3	-0.52	0.37	1.28	0.78

Tabel 10. Probabilitas Pengguna Roda 2

Skenario	o X1 X2		X	3	Kondisi	Kondisi Optimis		Kondisi Pesimis		
No	Tarif	Kode	Tarif	Kode	Durasi	Kode	bo+b1X1+	Probabilitas	bo+b1X1+	Probabilitas
110	Pertama	Koue	Berikutnya	Koue	(Menit)	Koue	b2X2+b3X3	(%)	b2X2+b3X3	(%)
1	2000	0	1000	0	15	0	-0.12	0.47	1.29	0.78
2	2000	0	1000	0	30	1	0.54	0.63	1.92	0.87
3	2000	0	1000	0	45	2	1.2	0.77	2.55	0.93
4	2000	0	1000	0	60	3	1.85	0.86	3.17	0.96
5	2000	0	2000	1	15	0	-0.86	0.3	0.65	0.66
6	2000	0	2000	1	30	1	-0.2	0.45	1.28	0.78
7	2000	0	2000	1	45	2	0.45	0.61	1.91	0.87
8	2000	0	2000	1	60	3	1.11	0.75	2.54	0.93
9	4000	1	2000	0	15	0	-1.67	0.16	0	0.5
10	4000	1	2000	0	30	1	-1.01	0.27	0.63	0.65
11	4000	1	2000	0	45	2	-0.36	0.41	1.26	0.78
12	4000	1	2000	0	60	3	0.3	0.57	1.88	0.87
13	4000	1	4000	1	15	0	-2.41	0.08	-0.63	0.35
14	4000	1	4000	1	30	1	-1.76	0.15	-0.01	0.5
15	4000	1	4000	1	45	2	-1.1	0.25	0.62	0.65
16	4000	1	4000	1	60	3	-0.44	0.39	1.25	0.78

Setelah dilakukan perhitungan untuk mengetahui probabilitas pilihan masing-masing skenario selanjutnya akan dilakukan pemodelan skenario-skenario yang memenuhi asumsi peneliti dengan cara menghitung indeks parkir setiap lokasi parkir untuk mengetahui setiap pilihan skenario yang diberikan dapat menekan penggunaan ruang parkir.

Perhitungan: Indeks Parkir Setelah Penerapan Skenario Optimis Pilihan 1

Probabilitas keputusan parkir untuk kendaraan roda 4 dengan skenario optimis pilihan 1 sebesar 33%. Berikut contoh perhitungan indeks parkir setelah adanya penerapan pilihan 1:

$$IP Alun - alun Utara (Sebelum) = \frac{Akumulasi Parkir}{Jumlah Ruang Parkir} \times 100\%$$
$$= \frac{43}{40} \times 100\% = 108\%$$

$$IP\ Alun-alun\ Utara\ (Sesudah) = \frac{Akumulasi\ Parkir\times Probabilitas}{Jumlah\ Ruang\ Parkir} \times 100\%$$
$$= \frac{43\times33\%}{40}\times 100\% = \frac{14}{40}\times 100\% = 35\%$$

Berikut merupakan hasil perhitungan indeks parkir tiap-tiap lokasi parkir dengan diterapkannya skenario optimis pilihan 1:

		<u> </u>				
Lokasi	Total Ruang Parkir (SRP)	Akumulasi Eksisting		Akumulasi II Skenario 1	P Skenario 1	Keterangan
Alun-alun Utara	40	43	108%	14	35%	Memenuhi
Alun-alun Barat	16	21	131%	7	44%	Memenuhi
Alun-alun Selatan	22	26	118%	9	40%	Memenuhi
Jl. Pemuda	26	31	119%	10	40%	Memenuhi
	Rata-rata Ind	eks Parkir (II	P)		40%	Memenuhi

Tabel 11. Hasil Perhitungan Indeks Parkir Probabilitas Skenario Optimis 1

Berdasarkan perhitungan diatas dapat dilihat bahwa jika diterapkan tarif progresif skenario optimis 1 maka seluruh lokasi parkir memiliki indeks parkir dibawah 100% dengan rata—rata indeks parkir seluruh lokasi parkir sebesar 40% yang menunjukkan bahwa pada saat diterapkan tarif progresif skenario 1 dapat menekan penggunaan ruang parkir sehingga tidak terjadi penumpukan kendaraan pada lokasi—lokasi parkir tersebut. Berikut rekapan hasil perhitungan indeks parkir dan dari skenario optimis dan pesimis keputusan parkir roda 2 dan roda 4.

Tabel 12. Rekapitulasi Indeks Parkir Kondisi Optimis

			Roda 2	1		Roda 4				
Pilihan	Probabilitas	Indeks Parkir	Jumlah Lokasi Parkir Belum Memenuhi	Keterangan	Pilihan	Probabilitas	Indeks Parkir	Jumlah Lokasi Parkir Belum Memenuhi	Keterangan	
1	47%	73%	0	Memenuhi	1	33%	40%	0	Memenuhi	
2	63%	99%	2	Tidak Memenuhi	2	53%	63%	0	Memenuhi	
3	77%	120%	3	Tidak Memenuhi	3	71%	85%	0	Memenuhi	
4	86%	135%	3	Tidak Memenuhi	4	85%	101%	3	Tidak Memenuhi	
5	30%	46%	0	Memenuhi	5	22%	26%	0	Memenuhi	
6	45%	70%	0	Memenuhi	6	39%	46%	0	Memenuhi	
7	61%	95%	0	Memenuhi	7	59%	70%	0	Memenuhi	
8	75%	117%	3	Tidak Memenuhi	8	76%	90%	0	Memenuhi	
9	16%	25%	0	Memenuhi	9	9%	10%	0	Memenuhi	
10	27%	43%	0	Memenuhi	10	17%	21%	0	Memenuhi	
11	41%	64%	0	Memenuhi	11	32%	38%	0	Memenuhi	
12	57%	90%	0	Memenuhi	12	51%	61%	0	Memenuhi	
13	8%	13%	0	Memenuhi	13	5%	6%	0	Memenuhi	
14	15%	23%	0	Memenuhi	14	11%	52%	0	Memenuhi	
15	25%	39%	0	Memenuhi	15	21%	25%	0	Memenuhi	
16	39%	61%	0	Memenuhi	16	37%	44%	0	Memenuhi	

Tabel 13. Rekapitulasi Indeks Parkir Kondisi Pesimis

	Roda 2				_	Roda 4				
Pilihan	Probabilitas	Indeks Parkir	Jumlah Lokasi Parkir Belum Memenuhi	Keterangan	Pilihan	Probabilitas	Indeks Parkir	Jumlah Lokasi Parkir Belum Memenuhi	Keterangan	
1	78%	122%	3	Tidak Memenuhi	1	63%	75%	0	Memenuhi	
2	87%	136%	3	Tidak Memenuhi	2	79%	94%	1	Tidak Memenuhi	
3	93%	145%	3	Tidak Memenuhi	3	89%	106%	3	Tidak Memenuhi	
4	96%	135%	3	Tidak Memenuhi	4	94%	112%	4	Tidak Memenuhi	
5	66%	103%	2	Tidak Memenuhi	5	52%	61%	0	Memenuhi	
6	78%	122%	3	Tidak Memenuhi	6	69%	83%	0	Memenuhi	
7	87%	136%	3	Tidak Memenuhi	7	83%	99%	1	Tidak Memenuhi	
8	93%	145%	3	Tidak Memenuhi	8	91%	109%	3	Tidak Memenuhi	
9	50%	78%	3	Tidak Memenuhi	9	37%	44%	0	Memenuhi	
10	65%	104%	2	Tidak Memenuhi	10	56%	67%	0	Memenuhi	
11	78%	122%	3	Tidak Memenuhi	11	73%	87%	0	Memenuhi	
12	87%	136%	3	Tidak Memenuhi	12	85%	101%	3	Tidak Memenuhi	
13	35%	54%	0	Memenuhi	13	27%	32%	0	Memenuhi	
14	50%	78%	0	Memenuhi	14	44%	52%	0	Memenuhi	
15	65%	102%	2	Tidak Memenuhi	15	63%	75%	0	Memenuhi	
16	78%	121%	3	Tidak Memenuhi	16	78%	93%	1	Tidak Memenuhi	

Setelah didapatkan probabilitas yang dapat menekan penggunaan ruang parkir sampai dibawah 100% selanjutnya dilakukan pengelompokkan skenario dengan tipe yang sama, durasi yang sama dan indeks parkir yang memenuhi kriteria kemudian indeks parkir tertinggi diantara kelompok skenario lainnya untuk dimodelkan dalam kinerja lalu lintas.

Tabel 14. Skenario Optimis yang di Modelkan

Skenario	Kendaraan	Tarif Jam Pertama	Tarif Jam Berikutnya	Durasi	Indeks Parkir
1	Roda 2	2000	1000	15 Menit	73%
1	Roda 4	5000	2500	13 Meint	40%
2	Roda 2	2000	2000	20 Manit	70%
2	Roda 4	5000	2500	30 Menit	63%
3	Roda 2	2000	2000	15 Manit	95%
3	Roda 4	5000	2500	45 Menit	85%
4	Roda 2	4000	2000	60 Manit	90%
4	Roda 4	5000	5000	60 Menit	90%

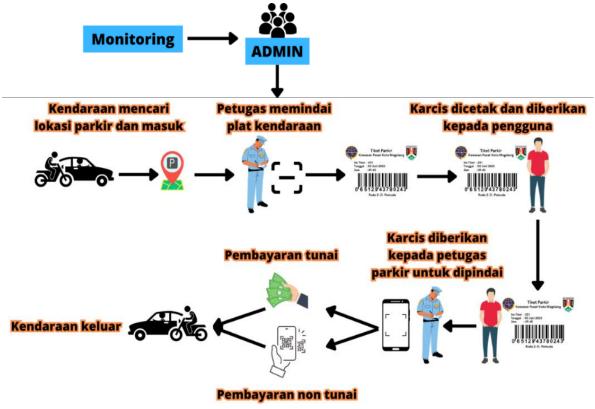
Tabel 15. Skenario Pesimis yang di Modelkan

Skenario	Kendaraan	Tarif Jam Pertama	Tarif Jam Berikutnya	Durasi	Indeks Parkir
1	Roda 2	4000	4000	15 Menit	54%
1	Roda 4	8000	8000	13 Meint	32%
2	Roda 2	4000	4000	20 Mania	78%
	Roda 4	8000	8000	30 Menit	52%

Setelah didapatkan Skenario yang akan dimodelkan, selanjutnya dilakukan pemodelan transportasi menggunakan PTV Vissim. Sebelumnya dilakukan uji validasi dengan menggunakan metode GEH untuk memperoleh model yang sesuai kondisi lapangan.

Gambar 2. Visualisasi dengan PTV Vissim

Dengan menggunakan simulasi *do nothing* pada kondisi eksisting dan do something dengan menggunakan skenario berdasarkan probabilitas dan indeks parkir yang didapatkan maka dihasilkan perbandingan kinerja jaringan jalan sebelum dan sesudah adanya peneran tarif progresif. Dari hasil tersebut dapat diputuskan skenario yang paling tepat untuk menyelesaikan permasalahan yang ada. Berikut tabel perbandingan kinerja jaringan jalan hasil pemodelan.


Tabel 16. Kinerja Jaringan Jalan Do Nothing dan Do Something

	Nilai							
Parameter	Eksisting	Skenario Optimis 1	Skenario Optimis 2	Skenario Optimis 3	Skenario Optimis 4	Skenario Optimis 1	Skenario Optimis 2	
Total Jarak Perjalanan (Km)	1044,7	1070,92	1138,66	1265,73	1062,37	1142,11	1207,19	
Tundaan Rata-Rata (Detik)	41,37	37,09	41,59	36,54	40,14	35,27	37,89	
Antrian Rata-Rata (m)	106,028	87,554	156,535	86,932	94,085	88,897	77,264	
Kecepatan Jaringan (Km/Jam)	28,74	30,81	29,11	32,03	28,22	33,54	32,76	
Total Waktu Perjalanan (Detik)	255.075	256.908,4	271.261	231.540,3	251.357,1	254.586,10	230.777,1	
Level Of Service	D	D	D	D	D	D	D	

Berdasarkan hasil pemodelan kinerja jaringan jalan didapatkan 2 skenario mempunyai perubahan signifikan yaitu skenario optimis 3 dan skenario pesimis 2. Maka dari itu dapat diterapkan skenario optimis 3 kemudian jika masih belum optimal dapat dilakukan penerapan skenario pesimis 2. Adapun skema dari skenario tersebut adalah:

1. Skenario Optimis 3 : Tarif awal sebesar Rp.2000,- dengan peningkatan Rp.2000,- untuk roda 2 dan untuk roda 4 sebesar Rp.5000,- dengan peningkatan Rp. 2500,- setiap 45 menit.

2. Skenario Pesimis 2: Tarif awal sebesar Rp.4.000,- dengan peningkatan Rp.4000,- untuk roda 2 dan untuk roda 4 sebesar Rp.8000,- dengan peningkatan Rp.8000,- setiap 30 menit Dalam operasional tarif progresif nantinya, regulator/operator harus membuat suatu aplikasi berbasis android dan website yang ditujukan kepada masyarakat pengguna fasilitas parkir, juru parkir dan admin yang akan memantau kegiatan perparkiran sehingga dapat memudahkan kegiatan perparkiran.

Gambar 2. Skema Elektronik Parkir

KESIMPULAN

- 1. Berdasarkan analisis persepsi dan perubahan perilaku pengguna fasilitas parkir on street terhadap rencana penerapan strategi tarif progresif pada Kawasan CBD Kota Magelang, diperoleh sebesar 63% pengguna setuju diterapkannya tarif progresif dan pengguna roda 2 yang tidak setuju memilih untuk melakukan perubahan lokasi parkir sebesar 46% sedangkan pengguna roda 4 yang tidak setuju sebesar 44% memilih untuk melakukan perubahan penggunaan moda menuju Kawasan CBD Kota Magelang yang mulanya menggunakan kendaraan pribadi menjadi menggunakan angkutan umum.
- 2. Berdasarkan analisis pengaruh probabilitas tiap skenario tarif progresif yang ditawarkan terhadap indeks parkir pada Kawasan CBD Kota Magelang, didapatkan 12 skenario dengan kondisi optimis untuk roda 2 dan 15 skenario untuk roda 4 yang dapat menekan indeks parkir yang melebihi 100%, sedangkan dalam kondisi pesimis mendapatkan 2 skenario untuk roda 2 dan 9 skenario kondisi pesimis untuk roda 4 yang dapat menekan indeks parkir yang melebihi 100%.

- 3. Berdasarkan analisis pengaruh penerapan skenario tarif progresif dalam mengatasi permasalahan kinerja lalu lintas, didapatkan pada kondisi eksisting tundaan rata—rata mencapai 41,37 detik dengan kecepatan jaringan yaitu 28,74 km/jam menghasilkan antrian mencapai 106,028 m dengan adanya penerapan skenario optimis 3 yaitu tarif untuk roda 2 sebesar Rp.2000,- meningkat Rp.2000,- dan untuk roda 4 sebesar Rp.5000,- meningkat Rp.2500,- setiap 45 menit menghasilkan tundaan rata—rata 36,54 detik dengan kecepatan jaringan sebesar 32,03 km/jam dan antrian mencapai 86,932 m sedangkan dengan adanya penerapan skenario pesimis 2 yaitu tarif untuk roda 2 sebesar Rp.4000,- meningkat Rp.4000,- dan untuk roda 4 sebesar Rp.8000,- meningkat Rp.8000,- setiap 30 menit menghasilkan tundaan rata—rata 37,89 detik dengan kecepatan jaringan sebesar 32,76 km/jam dan antrian rata—rata mencapai 77,264 m.
- 4. Berdasarkan pilihan pengguna fasilitas parkir terhadap elektronik parkir sebanyak 65% pengguna roda 2 dan 75% pengguna roda 4 memilih jenis elektronik parkir berbasis android. Pengguna elektronik parkir ini ditunjukkan kepada pengguna fasilitas parkir, petugas parkir dan admin. Dengan hal tersebut maka tampilan halam utama tiap aplikasi berbeda, untuk masyarakat dan petugas parkir penggunaan aplikasi disesuaikan dengan user interface smarthphone sedangkan untuk administrator menggunakan aplikasi yang berbasis web. Admin akan mengawasi kegiatan transaksi parkir secara real time yang dilakukan oleh petugas dan masyarakat.

UCAPAN TERIMA KASIH

Ucapan terima kasih peneliti sampaikan kepada pihak-pihak yang telah membantu dalam penyelesaian penelitian ini, yaitu Ketua STTD, Pembimbing Skripsi, dan Tim PKL STTD Kota Magelang Tahun 2022.

DAFTAR PUSTAKA

- GIZ-SUTIP. 2015. "Manajemen Parkir di Perkotaan". Toolkit Mobilitas Perkotaan di Indonesia. Jakarta: Kementrian Perencanaan Pembangunan Nasional/Badan Perencanaan Pembangunan Nasional (BAPPENAS)
- MKJI, 1997. 1997. "Manual Kapasitas Jalan Indonesia" (pp. 1–573). Jakarta: Departemen Pekerjaan Umum
- PTV VISION. 2014. "PTV VISSIM 7 User Manual". Jerman: PTV AG Group, Karlsruhe.
- Harlan, Johan. 2018. "Buku Analisis Regresi Logistik". Depok: Gunadarma.
- Dessy Angga A et al, 2017. "Kalibrasi Model Simulasi Vissim". Bekasi: Politeknik Transportasi Darat STTD.
- Ratminingsih, Ni Made. 2010. "Penelitian Eksperimental Dalam Pembelajaran Bahasa Kedua". Jurnal Pendidikan, Vol.6 (11). Buleleng: Universitas Pendidikan Ganesha.

- Paparan Hasil Metode Stated Preference. Yogyakarta: Pustral UGM, 2021.
- Shoup, Donald. 2018. "Parking and The City". A Planners Press Book. New York: 711 Third Avenue
- Gregory Pierce dan Donald Shoup. 2013. "Getting the Prices Right". Journal of the American Planning Association., Vol. 79 No. 1.
- Nur Afifah, Devi. 2020. "Penerapan Metode Regresi Logistik Biner Pada Kesejahteraan Rumah Tangga di Kabupaten Mojokerto". Malang: Universitas Islam Negeri Malik Ibrahim.
- Muinah Kusnul Kotimah dan Sri Pingit Wulandari. 2014. "Model Regresi Logistik Biner Stratifikasi pada Partisipasi Ekonomi Perempuan di Provinsi Jawa Timur". Jurnal Sains dan Seni Pomits, Vol. 3 (1), 2337 3520.