Evaluasi Perawatan Peralatan Persinyalan Luar Elektrik Di Lintas Maguwo-Srowot

Evaluation Of Signaling Equipment Maintenance Electricity Outside At Maguwo- Strowot Crossing

Farhan Arfi Zain^{1,*}, M Yugi Hartiman, ATD. M.Sc. (Eng)², Ir. Imam Prasetyo, S.T., M.T., IPM³

¹Politeknik Transportasi Darat Indonesia Jalan Raya Setu No. 89 Bekasi, Jawa Barat 17520, Indonesia ²Politeknik Transportasi Darat Indonesia Jalan Raya Setu No. 89 Bekasi, Jawa Barat 17520, Indonesia ³Direktorat Jenderal Perkeretaapian, Kementerian Perhubungan Jalan Medan Merdeka Barat No. 8 Jakarta Pusat 10110, Indonesia

¹Farhanarfiz01 @gmail.com*, ²yugi hartiman@yahoo.com,

³imamprasetyo@kemenhub.go.id

*Corresponding Author

Diterima: September 2023, direvisi: September 2023, disetujui: September 2023

ABSTRACT

Railways is mode transportation land that has share big in Indonesia, especially in service transport Railways are a mode of land transportation that has a large contribution in Indonesia, especially in large passenger and goods transportation services. Within a year, in the Daop 6 Yogyakarta area, especially on the Maguwo-Srowot route which is based on the SIL-02 signaling system, the highest percentage of external electrical signaling equipment disturbances occurred at the Brambanan Resort with a total percentage of 32% with a total of 46 disturbances. To avoid disruption of route formation and train delays on this route, it is necessary to review the maintenance of external electrical signaling equipment on the Maguwo-Srowot route so that it is more optimal and effective. The results of the research show that the highest frequency of disturbances to electrical signaling equipment in 2022 is axle counter disturbances with a frequency of 18 incidents accounting for 1164 minutes. Apart from that, the condition of spare parts at the Brambanan Resort only provides one unit per component so there are no spare components in case of damage. Then, in terms of human resources, it was found that working hours did not meet the standard, namely 13.7 hours per day with the availability of window time which still required time management and the number of maintenance personnel. Furthermore, finally, traffic capacity can be optimized again on the Lempuyangan-Maguwo road plot with the addition of 234 trains and an additional 140 trains for the Brambanan-Srowot road plot on condition that the reliability of the signaling system must be increased again.. Keywords: Electrical Outdoor Signaling Equipment, Maintenance Evaluation, Window Time, Passage Capacity, Spare Parts, Working Hours.

ABSTRAK

Perkeretaapian merupakan moda transportasi darat yang memiliki andil besar di Indonesia terutama pada layanan angkutan penumpang dan barang dalam jumlah banyak. Dalam kurun waktu setahun, wilayah Daop 6 Yogyakarta terkhususnya di lintas Maguwo-Srowot yang berbasis system persinyalan SIL-02, presentase gangguan peralatan persinyalan luar elektrik paling banyak terjadi pada Resort Brambanan dengan total presentase yaitu 32 % dengan total gangguan 46 kali. Untuk menghindari terganggunya pembentukan rute dan keterlambatan kereta api pada lintas tersebut, perlu dikaji kembali perawatan peralatan

persinyalan luar elektrik di lintas Maguwo-Srowot agar lebih optimal dan efektif. Hasil penelitian menunjukkan bahwa frekuensi terbanyak gangguan peralatan persinyalan elektrik di tahun 2022 yaitu pada gangguan axle counter dengan frekuensi 18 kali kejadian dengan andil 1164 menit. Selain itu, pada kondisi suku cadang di Resort Brambanan hanya menyediakan satu unit per komponennya sehingga tidak adanya komponen cadangan bila mana terjadi kerusakan. Kemudian dari segi sumber daya manusia didapatkan jam kerja yang tidak memenuhi standar yaitu 13,7 jam setiap harinya dengan ketersediaan window time yang masih membutuhkan manajemen waktu dan jumlah tenaga perawatan. Selanjutnya yang terakhir mengenai kapasitas lintas dapat dioptimalkan kembali pada petak jalan Lempuyangan-Maguwo dengan penambahan 234 KA dan ditambahkan 140 KA untuk petak jalan Brambanan-Srowot dengan syarat harus ditingkatkan kembali kehandalan sistem persinyalannya. **Kata Kunci:** *Peralatan Persinyalan Luar Elektrik, Evaluasi Perawatan, Window Time, Kapasitas Lintas, Suku Cadang, Jam Kerja.*

I. Pendahuluan

Perkeretaapian mempunyai peranan yang besar dalam bidang transportasi di Indonesia ini. kereta api sendiri mempunyai beberapa layanan angkutan seperti angkutan orang dan juga angkutan barang. Transportasi perkeretaapian juga mempunyai daya tarik sendiri bagi masyarakat Indonesia karena mempunyai beberapa keunggulan dari segi aspek yang tidak ada di transportasi lain seperti segi ketepatan waktu, keamanan, kebersihan dan juga jadwal yang sudah tertera dalam perkeretaapian perjalanan transportasi perkeretaapian mempunyai nilai tambah sendiri di bandingkan moda transportasi yang lainnya.

Karena moda transportasi perkeretaapian mempunyai daya tarik sendiri bagi masyarakat Indonesia, maka permintaan dari penumpang perkeretaapian sangalah tinggi sehingga harus didukung juga pelayanan perkeretaapian yang memadai, cepat, aman dan juga efektif, maka perananan perkeretaapian perkeretaapian perlu ditingkatkan lagi dengan melakukan perencanaan, pembangunan, pengoprasian, dan juga perawatan yang berkala, sehingga dapat mewujudakan transportasi perkeretaapian yang nyaman, aman, tertib, cepat dan efisien

Untuk mewujudkan hal tersebut diperlukan dukungan keselamatan yang harus diperhatikan, salah satunya dengan Melakukan perawatan berkala karena perawatan sendiri berpengaruh dalam juga keselamatan keamanan dan operasional kereta api, perawatan

prasarana perkeretaapian sendiri adalah kegiatan yang dilakukan tenaga perawatan prasarana untuk menjaga keandalan prasarana perkeretaapian agar prasarana perkeretaapian dapat tetap beroperasi dengan lancar dan tenaga perawatan prasarana perkeretaapian yaitu pegawai yang mempunyai kualifikasi dan juga kompetensi guna untuk merawat prasarana perkeretaapian.

Di wilayah Daop 6 Yogyakarta khususnya lintas Maguwo-Srowot berdasarkan data primer dan juga data sekunder yang diperoleh dari PT KAI pada lintas Maguwo-Srowot menggunakan system persinyalan SIL-02 dengan pemasangan pada tahun 2018, pada peralatan sinyal luar pada lintas Maguwo-Srowot masih sering terjadi gangguan yang bisa menyebabkan keterlambatan KA bahkan dapat menimbulkan dampak yang besar seperti kecelakaan KA, peralatan sinyal luar yang dimaksud yaitu peraga sinyal elektrik, pendeteksi sarana dan juga penggerak wesel.

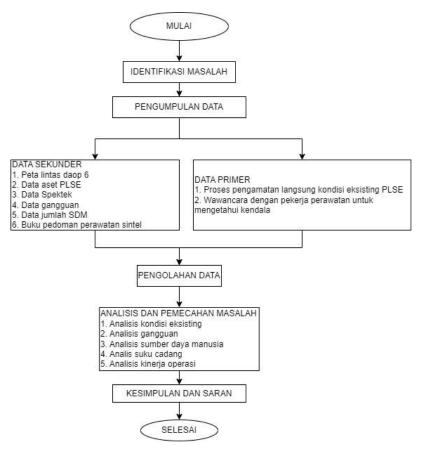
Untuk sebab itu untuk mendukung kelancaran dalam operasi kereta api harus diperlukan pemeriksaan dan juga perawatan prasarana perkeretaapian khususnya peralatan luar sinyal elktrik agar terciptanya perjalananan kereta api yang aman dan tepat waktu, sumber daya manusia yang ahli dalam merawatnya dan juga dengan beban kerja sesuai pula sangatlah diperlukan untuk mewujudakan hal tersebut

II. Metodologi Penelitian

A. Lokasi dan Waktu Penelitian

Penelitian ini dilakukan di Wilayah Kerja Balai Teknik Perkeretaapian Kelas I Semarang pada lintas Maguwo – Srowot yang termasuk dalam wilayah Daerah Operasi 6 Yogyakarta. Waktu penelitian ini dilakukan pada Praktek Kerja Lapangan (PKL) tepatnya pada tanggal 6 Maret 2023 sampai dengan 2 Juni 2023 yang kemudian dilanjutkan dengan kegiatan magang pada tanggal 3 Juni 2023 sampai dengan 23 Juni 2023.

B. Metode Pengumpulan Data

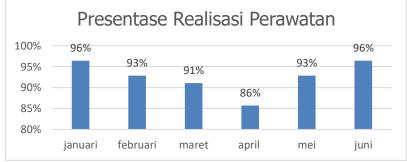

Teknik pengumpulan data merupakan metode atau teknik yang digunakan untuk mengumpulkan data, dalam penelitian ini terdapat beberapa teknik pengumpulan data yang digunakan. Teknik pengumpulan data yang digunakan seperti pada gambar II.1

C. Pengolahan Data

Dalam melakukan pengumpulan data penelitian ini diperoleh dari data sekunder maupun data primer, dasar untuk memperoleh jawaban tersebut berasal dari kedua data tersebut atas permasalahan yang telah ditemukan dalam penelitian ini

D. Analisis Data

- Teknik Analisis Data diawali dengan mencari data yang diperoleh dari data gangguan, catatan lapangan dan dokumentasi. Kemudian dilakukan penyusunan secara sistematis data yang diperoleh dengan telah mengorganisasikan data ke dalam kategori, menjabarkan dalam unit-unit, melakukan sintesis. dan membuat kesimpulan sehingga mudah dipahami oleh diri sendiri maupun orang lain. Adapun teknik analisis data yang digunakan dalam penelitian ini meliputi Analisis kuantitatif dan kualitatif
- 2. Bagan Alir Penelitian Bagan alir merupakan tahapan kegiatan dalam analisis dari awal studi sampai menghasilkan suatu rekomendasi/usulan dan kesimpulan. Pola pikir yang dikembangkan dalam penelitian ini dapat dilihat pada bagan alir penelitian sebagai berikut.


Gambar II. 1 Bagan Alir Penelitian

Sumber: Hasil Analisis

III. Hasil dan Pembahasan

A. Analisis Kondisi eksisting

Dalam realisasinya berdasarkan tebel tersebut masih adanya gap antara jadwal standar yang ada dan realisasi di lapangan sehingga menyebabkan gangguan pada peralatan luar persinyalan elektrik khususnya pada perawatan axle counter, yang terjadwal mingguan dalam perawatan masih mengalami gangguan, untuk itu perlu dilakukan frekuensi perawatan lebih tinggi lagi yaitu setiap hari dilakukan pemeriksaan selama tiga kali sehari oleh petugas negative check.

Gambar III. 1 Grafik Realisasi Perawatan

Sumber: Unit sintel DAOP 6 Yogyakarta

Dalam grafik tersebut dapat ditarik kesimpulan bahwa pada perawatan di Resort 6.4 Brambanan masih adanya realisasi yang belum memenuhi target dimana dalam perawatan di keseluruhan asset paling tinggi dalam program sebulan tercapai sebanyak 96% dalam 56 program perawatan

yang terealisasi sebanyak 54 program, dimana program tersebut tidak dapat terpenuhi dikarenakan kurangnya waktu pengerjaan dan juga kurangnya sumber daya manusia Terkait hal itu diperlukan window time untuk mengetahui berapa tersedianya jam waktu yang kosong pada setiap harinya berdasarkan GAPEKA tahun 2023 dapat dilihat sebagai berikut:

Tabel III. 1 Ketersediaan window time jam 00:00-08.00

waktu	00:00 - 01:00	01:00 - 02:00	02:00 - 03:00	03:00 - 04:00	04:00 - 05:00	05:00 - 06:00	06:00 - 07:00	07:00 - 08:00
window time	26	33	40	43	40	27	16	23
Total				24	18			

Sumber: GAPEKA, 2023

Tabel III. 2 Ketersediaan window time jam 08:00-16.00

waktu	08:00 - 09:00	09:00 - 10:00	10:00 - 11:00	11:00 - 12:00	12:00 - 13:00	13:00 - 14:00	14:00 - 15:00	15:00 - 16:00
Window time	25	22	18	20	22	25	22	18
Total				17	72			

Sumber: GAPEKA, 2023

Tabel III. 3 Ketersediaan window time jam 16:00-24.00

waktu	16:00 - 17:00	17:00 - 18:00	18:00 - 19:00	19:00 - 20:00	20:00 - 21:00	21:00 - 22:00	22:00 - 23:00	23:00 - 24:00
window time	27	25	16	21	16	20	18	19
Total				10	52			

Sumber: GAPEKA, 2023

Dampak dari window time yang lebih kecil daripada waktu perawatan menyebabkan perawatan sering mengalami kendala, sehingga untuk melakukakan perawatan yang berkaitan dengan lintas menggunakan metode predictive berdasarkan gangguan yang paling banyak terjadi.

Tabel III. 4 Metode Perawatan Predictive

- anavyatan	Vaciatan			Window				
perawatan	Kegiatan	Optimis	jumlah	Normal	jumlah	Pesimis	jumlah	Time
	melakukan pengisian pelumas wesel	25		30		35		
	mengecek kondisi peralatan wesel	40		45		45		
Wesel	mengganti baut/mur/pengikat pada kesan atau lockbox yang hilang	55	290	60	325	65	355	582
	mengukur kelebaran spur	55		60		65		

- anavyatan	Vaciatan			Waktu ((Menit)			Window
perawatan	Kegiatan	Optimis	jumlah	Normal	jumlah	Pesimis	jumlah	Time
	mengecek kerepatan ganjalan lidah wesel	40		45		50		
	mengecek baut penambat motor dan plat landas	45		50		55		
	mengecek kondisi perkabelan	30		35		40		
	mengecek kondisi pelindung dan klem kabel	80		85		90		
	mengecek dan menguji fungsi LED power Evaluator	50		55		60	400	
Axle counter	mengecek kondisi bonding	55	350	60	375	65		582
	melakukan pengecekan dan perawatan <i>Axle</i> <i>counter</i>	105		110		115		
C I II	mengecek posisi head sensor	60		65		70		

Sumber: Hasil Analisis

Dengan penggunaan perawatan dengan metode predictive maintenace bisa diharapkan dapat mengurangi gangguan yang ada dikarenakan perawatan ini bertujuan untuk memprediksi kemungkinan terjadinya kegagalan pada perawatan prediktif ketika sebuah komponen atau sistem berisiko mengalami kerusakan.

B. Anilisis Gangguan

Dalam analisis gangguan ini membahas terkait gangguan yang terjadi pada peralatan luar persinyalan elektrik dikarenakan dalam data gangguan kondisi eksisting pada analisis diatas gangguan yang sering terjadi adalah pada ketiga peralatan tersebut. Berikut merupakan permasalahan - permasalahan apa saja terkait gangguan terjadi dan bagaiamana Tindakan yang dilakukan untuk mengatasi gangguan tersebut :

Tabel III. 5 Gangguan Axle Counter

NO	LOKASI	DURASI (Menit)	DENIZEDAD	TINDAKAN
1	Srowot	66	Modul VUR Rusak	Mengganti Modul VUR
2	Brambanan	32	Channel H tidak terdeteksi karena posisi head berubah (indikasi di injak orang)	Setting posisi head dan reset track 10AT/14CT
3	srowot	175	Fuse putus di ZP 11	mengganti fuse yg putus
4	Brambanan	127	Fuse Zp 14A yg putus	Mengganti Fuse Zp 14A yg putus

		DURASI		
NO	LOKASI	(Menit)	PENYEBAB	TINDAKAN
5	Maguwo	23	Channel H tidak terdeteksi karena posisi head berubah (indikasi di injak orang)	dilakukan <i>Setting</i> posisi head dan <i>reset track</i> 10AT/14CT
6	Maguwo	33	Track 14CT/14DT merah setelah dilewati KA Ukur d6/10213	Reset track 14CT/14DT dan memastikan parameter axle counter dalam range referensi standard
7	Brambanan	69	Error counting	proses perbaikan dan Mereset Track
8	Srowot	31	Counting head rusak	Penggantian counting head zp 24A
9	Maguwo	47	Modul Vur rusak	Mengganti modul Vur
10	Brambanan	51	Channel H tidak terdeteksi karena posisi head berubah (indikasi di injak orang)	dilakukan <i>Setting</i> posisi head dan reset track
11	Srowot	50	Counting head/ retak terganjal batu oleh orang tidak bertanggungjawab	Mengganti counting head yang pecah
12	Srowot	89	Modul VUR rusak / pada saat normal readi H dan L nyalahijau, active H merah ikut menyala merah redup kedip	Mengganti modul VURyang rusak
13	Brambanan	27	Orang tidak bertanggungjawab/ counting head kedapatan paku	Membersihkanpaku di atas counting head
14	Maguwo	55	Error counting	Reset evaluator
15	Maguwo	45	Merah sendiri/ setting sensor terlalu sensitive	Setting kedudukanhead H/L
16	Brambanan	78	Head kendor setelah dilewati KA	Pengecekankedudukan head dan pengukuranpamameter
17	Brambanan	147	Merah setelahdilalui KA	Mengecek dan ukur tegangan menggunakan parameter
18	Maguwo	19	Eror Counting/merah sendiri	Mereset dan mengecek tegangan

Dapat ditarik kesimpulan dari tabel diatas jika dijumlahkan dalam setahun andil sebanyak 1164 menit dan terdapat berbagai jenis gangguan yang terjadi di axle counter dalam lintas Maguwo sampai dengan Srowot. Baik faktor internal berupa eror peralatannya atau dari faktor eksternal berupa lingkungan dan juga faktor manusia, Berkaitan dengan hal itu gangguan ditangani perlakuan yang berbeda berdasarkan faktor internal dan juga faktor eksternal, berikut merupakan penganganan dari tindak lanjut gangguan yang terjadi pada gangguan yang terjadi:

a. Faktor internal

Faktor internal berupa gangguan yang berasal dari peralatan yang mengalami kerusakan maupun terjadinya kegagalan. Dalam proses kerja perawatan tersebut seperti kegagalan pada rangkaian sensor yang disebabkan seperti eror counting head kendor setelah dilewati KA, modul vur rusak, dan fuse yang putus.

b. Faktor eksternal

Dalam lintas Maguwo sampai dengan Srowot merupakan wilayah yang rawan aakan keamanan dan ketertiban dikarenakan banyaknya pemukiman yang dekat dari jalur kereta api, berdasarkan survei tim PKL Satuan Pelayanan Yogyakarta masih banyaknya vandalisme yang dilakukan oleh orang yang kurang bertanggung jawab berdasarkan data Gangguan axle counter Altpro (Single Head) yang terletak di Stasiun Maguwo sampai dengan Srowot terjadinya gangguan faktor eksternal hal in disebabkan oleh beberapa hal meliputi:

- 1) Banyaknya aktivitas warga di sekitar jalur Lintas Maguwo sampai dengan Srowot sehingga menyebabkan jalur kurang steril.
- 2) Adanya material yang terbawa saat kereta api melintas sehingga apabila melewati pendeteksi sarana membuat head sensor rusak atau pecah

Dari kedua permasalah eksternal tersebut merupakan pendorong terjadinya gangguan eror counting head rusak terinjak oleh orang maupun rusak dikarenakan material asing yang mengenai head sensor karena berada di pemukiman warga dan juga perumahan warga sekitar. Untuk mengurangi dari gangguan dapat dilakukan perbandingan terhadap penggunaan pendeteksi sarana dapat melakukan perbandingan antara axle counter single head dan double head guna melakukan pertimbangan lebih lanjut lagi dalam penggunaan pendeteksi sarana single head yang telah banyak mengalami gangguan.

Tabel III. 6 Perbandingan *Axle Counter*

Prinsip kerja	Single Head	Double Head
Sistem	Menggunakan sensor sitem H dan L	Gelombang Elektro Mangnetic dengan frekuensi 43 khz
Cara kerja	Menggunakan prinsip perhitungan jumlah gandar yang telah melewati, dengan jumlah gandar yang masuk sama dengan jumlah gandar yang keluar maka sitem akan clear telah dilewati kereta	Menggunakan prinsip kerja pengiriman gelombang electromagnetic pada transmitter dan juga receiver sebesar 43 khz jika pada saat kereta meleawati maka pengiriman gelombang electromagnetik akan terhalang oleh flens roda kereta api sehingga receiver tidak dalapt menerima gelombang electromagnetik maka sistem interlocking akan mendekteksi bahwa adanya kereta api pada track tersebut
Kelebihan	Dapat menghitung gandar pada	Tidak tergantung pada
	sarana kereta api.	suhu panas pada <i>track</i>
	2. Murah.	dikarenakan

Prinsip kerja	Single Head	Double Head
	Pemasangan yang lebih mudah dikarenakan tidak tertanam di badan rel	menggunkan prinsip gelombang elektromagnetik. 2. Menggunakan proses prinsip kerja yang sederhana. 3. Mudah dilakukan perawatan. 4. Suku cadang masih banyak tersedia 5. Posisi head sensor yang tidak mudah kendor karena tertanam di badan rel
Kekurangan	 Sensitifitas sangat tinggi terhadap suhu ditrak sehingga bisa menyebabkan eror counting. Sulit untuk melakukan perawatan. Pemasangan di badan rel menggunakan brecket sehingga mudah kendor. 	 Tidak dapat melakukan penghitungan gandar Harga yang begitu mahal Pemasangan yang lebih sulit dikarenakan tertanam pada badan rel
	Suku cadang langka. Perawatan rutin dilakukan	

Sumber: Hasil Analisis

Tabel III. 7 Gangguan Peraga Sinyal

NO	LOKASI	DURASI (Menit)	DENIZED A D	TINDAKAN
1	IB Janti	69	disturb	pemerikasaan dan perbaikan dengan dan mencek tegangan pada peralatan vital
2	IB Janti	221	modul DRP.1 di IB	perbaikan mengganti modul drp.1 di ib janti
3	Brambanan	178	Modul sinyal aspek kuning rusak	ganti modul sinyal aspek kuning
4	Srowot			ganti modul sinyal aspek merah
5	Brambanan	110	modul ZRE 12 dan Modul SWH 12/22 rusak	mengganti modul
6	Maguwo	115	Hrato nada neraga	mengganti trafo 380/5v
7	Srowot	189	Cangguan Shiyar EKK	melakukan perbaikan dengan

NO	LOKASI	DURASI (Menit)	DENIVEDAD	TINDAK	AN
				menyetting tegangan	ulang

Sumber: Resort 6.4 Brambanan

Dari tabel gangguan peraga sinyal dapat disimpulkan jika jumlahkan andil dalam setahun sebanyak 979. Gangguan disebabkan oleh peralatan yang rusak dan juga kegagalan dalam pemrosesan keluaran output sinyal, maka perlu dilakukannya pengecekan dan juga perawatan tegangan di setiap komponen dalam peraga sinyal.

Tindakan lebih lanjut untuk mengurangi gangguan peraga persinyalan yaitu dengan melakukakan pengukuran standar tegangan sinyal LED, Resistensi kabel dan melakukan pengukuran grounding. Dengan nilai standar tegangan sinyal LED sebesar 110V AC \pm 10 % atau range antara 99V-121V AC. Dalam pengukuran resistensi kabel sinyal LED paling jauh nilainya harus di bawah \leq 50 α dan nilai pentanahan nilainya harus \leq 50, dan jika pada saat setting menemukan tegangan di bawah rata-rata harus dilakukan perbaikan dengan setting tegangan input agar sesuai dengan range yang diperbolehkan agar meminimalis gangguan yang terjadi.

Tabel III. 8 Gangguan Penggerak Wesel

NO	LOKASI	DURASI (Menit)	PENYEBAB	TINDAKAN
1	Brambanan	96	kopling motor rusak	mengganti kopling motor
2	Srowot	53		Mengganti fuse yang putus
3	srowot	79	Lidah kiri tidak	Perbaikan dengan setiing pada stang deteksi
4	Brambanan	54		Dilakukannya penggantian tombol wesel
5	Maguwo	65	Modul rusakdan indikasi kedip pada pelayanan, dan pada evaluator	Pergantian modul
6	Maguwo	171	I os deteksi karena	Mencari tegangan yang hilang 50Vdc,memeriksa terminasi luar
7	Brambanan	198	Wesel tidak bisa menutup rapat sehingga indikasi kedip di meja pelayanan	nenggerak dan

Dalam tabel diatas dijumlahkan andil dalam setahun sebanyak 719 menit dan gangguan disebabkan oleh faktor internal dimana faktor yang terjadinya gangguan tersebut dalam

pengontrolan pihak Resort Sintelis 6.4 Brambanan. Dan gangguan faktor internal disebabkan oleh kurangnya perawatan dari petugas perawatan, dan gangguan internal juga bisa terjadi karena evaluator wesel.

Tindak lanjut dari gangguan pada wesel ini harus ditingkatkan lagi terkait perawatan maupun pemeliharan setiap komponen, karena mengingat semua gangguan dalam wesel ini bersifat internal sehingga pengecekan tegangan disetiap komponen pada point machine meliputi sisi tegangan penggerak (motor) dan sisi tegangan deteksi. Umtuk itu kehandalan dalam point machine perlu diperhatikan terkait standar tegangan motor atau tegangan power BSG 380 VAC ± 10% atau dalam range (60-140 VDC), dan tegangan deteksi (balikan) 24V DC ± 10% atau dalam range (21,6-26,4 VDC) dan nilai arusnya <10A, sehingga perlu dilakukan setting tegangan deteksi pada W11A, W21A, W43A, W43B, W13, W11B, W33, W41A, W41B, dan W43A, agar bisa menjaga kehandalan point machine dan megurangi gangguan yang ada.

C. Analisis Sumber Daya Manusia

```
Berikut adalah perhitungan beban kerja jam orang per pegawai dalam satu hari:
Perhitungan Jam Orang (JO) Per Hari Resort Brambanan
Beban Kerja Pegawai Per Bulan =(Jumlah Total BKP )/12
=(2054360 (menit))/12
=(34239 (Jam))/12
=2853 (jam orang)/bulan

JO/Hari =(BKP/Bulan)/(jumlah jam kerja dalam 1 bulan )
=(2853 (jam orang)/bulan)/26
=109,73 (jam orang)/hari

Perhitungan jam orang (JO) per hari per orang
JO/orang =(JO/hari)/(jumlah pegawai )
=(109,73 (jam orang)/hari)/8
=13,7 jam
```

Berdasarkan perhitungan diatas, jam kerja rutin dalam sehari di Resort 6.4 Brambanan adalah 7 jam kerja, pada perhitungan diatas beban kerja jam orang setiap pegawai yaitu 13,7 jam perhari, hal ini menyatakan bahwa beban kerja Resort 6.4 Brambanan melebihi standar jam kerja yang telah ditentukan yaitu melebihi 7 jam sendiri yaitu 2 kali lipatnya sehingga membutuhkan penambahan pegawai agar jam kerja tidak melebihi standar dan pegawai di Resort 6.4 Brambanan dapat melakukan pekerjaan secara optimal. Pada perhitungan berikutnya menghitung kebutuhan pekerja perawatan :

Menurut Keputusan Direksi PT.KAI Nomor KEP.U/KP.101/I/KA-2014 tentang Perhitungan Beban Kerja dan Kebutuhan Pekerja dapat dihitung mengenai kebutuhan beban pekerja perawatan :

```
Pekerja perawatan = BKP/jkp×In
=34239/1947,75×1,04
=18,2
=18
Kekurangan Pegawai = JP×AP
=18-8
=10
```

Keterangan

BKp : Beban Kerja Pertahun JKp : Jam Kerja Pertahun

In: Indeks (1,04)
JP: Jumlah Pekerja
AP: Adanya Pekerja

Dapat ditarik kesimpulan bahwa dari perhitungan ini didapatkan kekurangan pegawai sebanyak 10 orang pegawai. Untuk memperoleh hasil yang lebih optimal lagi dalam perawatan harus segera ditambahkan pegawai, jika pegawai masih 8 orang dan satu orangnya saja mempunyai jam kerja dalam seharinya 13,7 jam, maka hasil dari perawatan tidak akan mendapatkan hasil yang optimal sehingga bisa mengakibatkan gangguan sistem persinyalan yang berdampak pada keterlambatan kerata api dan bahkan juga bisa mengakibatkan hal yang paling fatal yaitu kecelakaan kereta api.

D. Analisis Suku Cadang

Dalam melaksanakan perawatan perlu adanya kesiapan atau kesiagaan dalam melakukan perbaikan maupun pemeliharaan komponen yang ada, untuk menjaga kehandalan peralatan luar persinyalan elektrik perlu adanya kesiapan suku cadang yang mencukupi dan juga sesuai dengan standar yang ada.

Tabel III. 9 Ketersediaan Suku Cadang

NO	SUKU CADANG	JUMLAH	KONDISI	
1	Modem Multidrop	1 Unit	Baik, Baru pengadaan 2019	
2	Modul LED Sinyal Aspek Merah	1 Unit	Baik, Servisan Workshop	
3	Modul LED Sinyal Langsir putih	2 Unit	Baik, Bekas L44 Bbn	
4	Modul LED Sinyal langsir putih	1 Unit	Baik, Bekas L44 Bbn	
5	Modul Sinyal Aspek Merah	2 Unit	Baik, Servisan Workshop	
6	Modul sinyal Aspek Kuning	1 Unit	Baik, Servisan Workshop	
7	Aresster phoenic kontac	4 Unit	Baik, Baru	
8	Limit switch pintu	1 Unit	Baik, Bekas JPL 287	
9	PSU DNVT 24 Vdc	1 Unit	Baik, Servisan Workshop	
10	Flashing Unit	2 Unit	Baik, Servisan Workshop	
11	Modem CTC Union optic to serial	2 Pasang	Baik, eks Ketanggungan	
11			Baik, eks IB Kalasan	
12	Resistor Burning Sinyal	2 Unit	Baik, eks MJ 10 bbn dan eks MJ24 bbn	
13	MPU	1 Unit	Baik, eks Evaluator 6 Stasiun Brambanan	
14	Zag	1 Unit	Baik, eks Evaluator 5 Stasiun Brambanan	
15	Zanap	1 Unit	Baik, eks Evaluator 4 Stasiun Brambanan	
16	Relay QECX1	1 Unit	Baik, Eks J24 bbn	
17	Relay QBBA1	1 Unit	Baik, eks W 11/21A bbn	
18	Relay QBCA1	1 Unit	Baik, eks W 11/21A bbn	

NO	SUKU CADANG	JUMLAH	KONDISI	
19	VUR	1 Unit	Baik, servisan workshop	
20	Head AXC	1 Unit	Baik, Bekas	

Sumber: Resort 6.4 Brambanan

Dapat dilihat dalam tabel suku cadang diatas suku cadang hanya menyiapkan setiap komponennya hanya satu unit saja, dan dalam realisasi dilapangan Ketika melakukan perawatan dan juga pemeliharaan banyak terjadi kerusakan di komponen yang sama dan jika terjadi kekurangan suku cadang di Resort Brambanan maka perawatan terkendala dikarenakan harus mengajukan keresort terdekat dan resort yang masih mempunyai komponen cadangan yang diperlukan untuk di gunakan ke Resort Brambanan. maka di perlukan lagi perhitungan suku cadang akan kebutuhan dan juga memaksimalkan kondisi komponen agar perawatan tidak mengalami kendala dan tidak mengambil andil yang cukup banyak dalam keterlambatan kereta api.

E. Analisis Kinerja Operasi

Berdasarkan 46 gangguan selama setahun yang terjadi di resort 6.4 Brambanan dapat disimpulkan bahwa seluruh gangguan menyebabkan keterlambatan kereta api, sehingga setiap terjadinya gangguan peralatan luar persinyalan elektrik mempengaruhi terhadap headway kereta api yang melintas pada lintas tersebut. umtuk mengurangi gangguan yang ada dan menyebabkan keterlambatan Kereta api perlu dilakukannya peningkatan frekuensi perawatan dengan memperhatikan ketersediaan waktu perawatan sehingga keterlambatan kereta api dapat di minimalisir lagi.

Berdasarkan program dan kapasitas lintas DAOP 6 Yogyakarta, kapasitas lintas Maguwo-Srowot masih ada sisa sehingga untuk memaksimalkan sisa dari kapasitas lintas tersebut perlu adanya prasarana yang memadahi khususnya khususnya peralatan luar persinyalan elektrik, berikut merupakan sisa kapasitas lintas di Maguwo-Srowot:

Tabel III. 10 Sisa Kapasitas Lintas

Program KA Reguler/ Fakultatif Daop 6 Yogyakarta Gapeka 2023							
No	Lintas	Program	Kapasitas Lintas	Sisa Kapasitas			
1	Lempuyangan-Brambanan	118 KA/hari	352 KA/hari	234 KA/hari			
2	Brambanan- Klaten	122 KA/hari	262KA/hari	140 KA/hari			

Untuk pertimbangan yang paling akhir terkait dari gangguan yang paling banyak yaitu dengan melakukan pergantian axle counter single head menjadi axle conter double head dikarenakan dalam andil perjalanan kereta api dapat disimpulkan peralatan tersebut tidak andal lagi dan perlu di tingkatakan lagi sehingga pada Kapasitas Lintas pada lintas Maguwo-Srowot dapat terpenuhi dan dapat meningkatkan frekuensi kereta api.

IV. Kesimpulan

Berdasarkan hasil analisis gangguan yang terjadi di Resort 6.4 Brambanan analisis menunjukan bahwa gangguan peralatan persinyalan pada tahun 2022 dengan frekuensi terbanyak pada gangguan axle counter, peraga sinyal, dan wesel. Gangguan pada axle counter dengan frekuensi 18 kali dengan andil 1164 menit, untuk peraga sinyal dengan frekuensi 7

kali dalam setahun dengan andil sebanyak 979 menit, dan untuk wesel dengan frekuensi sebanyak 7 kali dengan andil 719 menit. Gangguan terbanyak pada axle counter dimana adanya gap waktu program perawatan dengan realisasi di lapangan.Kondisi suku cadang di Resort Brambanan masih terdapat kekurangan dikarenakan hanya menyediakan satu unit per komponennya sedangkan realisasi di lapangan

banyak komponen yang sama yang mengalami kerusakan sehingga jika terjadi gangguan membutuhkan waktu yang cukup lama untuk mencari suku cadang yang ada. Ketersediaan waktu window time masih mencukupi pada peralatan luar persinyalan elektrik, dalam penerepannya membutuhkan waktu perawatan dan jumlah tenaga perawatan yang berbeda beda dan juga harus memiliki kompetensi tenaga perawatan sesuai asset dirawat.Ditemukan salah satu faktor yang menyebabkan terjadinya gangguan di Resort 6.4 Brambanan yaitu kurangnya sumber daya manusia dikarenakan dalam perhitungan beban keria setiap petugas resort brambanan mempunyai jam kerja yang tidak memenuhi standar yaitu 13,7 jam setiap harinya.Diketahui dari analisis gangguan dapat disimpulkan bahwa dari ketiga peralatan luar persinyalan elektrik yaitu axle counter, peraga sinyal, dan penggerak wesel, gangguan yang tertinggi yaitu pada peralatan axle counter. Peralatan axle counter juga mengambil andil yang banyak dalam perawatan maupun pemeliharaan, dapat disimpulkan bahwa peralatan axle counter single head sudah tidak andal lagi. Dikarenakan dalam analisis kapasitas lintas untuk petak jalan Lempuyangan-Maguwo masih bisa ditambahkan kapasitasnya lagi sebanyak 234 KA dan ditambahkan 140 KA lagi untuk Brambanan-Srowot dengan svarat harus ditingkatkan kehandalan sistem persinyalannya.

V. Saran

Dari kesimpulan, dapat direkomendasikan bahwa pihak perawatan khususnya resort Brambanan untuk lebih menerapkan perawatan sesuai dengan manual book setiap peralatan, menambahkan suku cadang, menerapkan metode perawatan *preventive* dan metode perawatan *predictive*, menambahkan jumlah pegawai, dan yang terakhir melakukan peningkatan kehandalan peralatan *axle counter*

VI. Daftar Pustaka

Direksi PT. Kereta Api Indonesia (Persero). (2014). Surat Keputusan Direksi PT. Kereta Api Indonesia (Persero) Nomor KEP.U/KP.101/I/10/KA-2014 Tentang Metode Perhitungan Beban Kerja (workload) dan Kebutuhan Pekerja di Lingkungan PT. Kereta Api Indonesia

- (Persero). Juanda : PT. Kereta api Indonesia (Persero).
- Gomes, Faustino Cardoso. (1995). Manajemen Sumber Daya Manusia. Yogyakarta: Andi Offset.
- Komaruddin. (2006).Ensiklopedia Manajemen. Penerbit Bumi Aksara,Jakarta.
- Syaiful, S., & Akbar, L. (2020). Analisis
 Pengaruh Kecepatan Lalu Lintas
 Terhadap Kebisingan yang
 Ditimbulkan Kendaraan Bermotor.
 ASTONJADRO, 4(1), 13-19.
 https://doi.org/10.32832/astonjadro.v
 4i1.818.
- Sumarsono, Sonny. (2003). Ekonomi manajemen sumberdaya manusia dan ketenagakerjaan. Yogyakarta :: Graha Ilmu
- Supriadi, Uned. (2008). Kapasitas Lintas dan Permasalahanya. Bandung : PT. Kereta Api(Persero)
- TIM PKL SATUAN PELAYANAN
 YOGYAKARTA, (2023). Laporan
 Umum Tim PKL Satuan Pelayanan
 Yogyakarta. Bekasi: Politeknik
 Transportasi Darat Indonesia-STTD.
- Wibawanto, Bima Sekti, (2022). Analisis
 Peralatan Persinyalan Kereta Api
 dengan persinyalan Elektrik
 Silsafe4000 di Stasiun Lempuyangan
 Yogyakarta. Yogyakarta: Jurnal
 Perkeretaapian Indonesia.