ANALISIS PEMILIHAN MODA TRANSPORTASI ANTARA BUS AKDP DENGAN KERETA API COMMUTER SUPAS PADA LINTAS BANGIL – SURABAYA

ANALYSIS OF TRANSPORTATION MODE SELECTION BETWEEN INTERCITY BUS AKDP AND COMMUTER TRAIN SUPAS ON THE BANGIL - SURABAYA ROUTE

Mutia Defra D.¹, Guntoro.Z.M², Siti Khadijah.K³

¹ Politeknik Transportasi Darat Indonesia-STTDJl, Raya Setu No.89, Cibitung, Kec. Setu, Bekasi, Jawa Barat 17530

² Sarjana Terapan Transportasi Darat, PTDI-STTD, Indonesia

ABSTRACT

The selection of transportation modes between AKDP (Antar Kota Dalam Provinsi, meaning Intercity within the Province) buses and Supas commuter trains offer alternative choices for passengers traveling from Pasuruan Regency to Surabaya City. However, both options have their advantages and disadvantages in transportation service provision. This study analyzes travel patterns and preferences in selecting transportation modes between AKDP buses and Supas commuter trains on the Bangil - Surabaya route. Based on the analysis of travel patterns, it was found that the area with the highest destination frequency is in zone XLVI (Surabaya City). The use of AKDP buses and Supas commuter trains is dominated by work or business activities. Additionally, a binary logit analysis using primary data from interviews conducted with the stated preference method shows that the choice of transportation mode is influenced by generalized cost factors, which will be explained using descriptive analysis. Among these factors, travel time has the most significant impact on the choice of train mode, followed by travel costs. This study reveals that there is potential to optimize the use of the Supas commuter train by focusing on aspects such as scheduling and fare determination for the Bangil to Surabaya route to meet the expectations and needs of service users

Keywords: Travel Patterns, Mode Selection, Binary Logit Analysis

ABSTRAK

Pemilihan moda transportasi di antara Bus AKDP dan Kereta Api *Commuter supas* memberikan alternatif pilihan bagi penumpang dalam perjalanan dari Kabupaten Pasuruan menuju Kota Surabaya. Namun, kedua pilihan ini memiliki kelebihan dan kekurangan dalam pelayanan jasa transportasi. Studi ini menganalisis pola perjalanan dan preferensi pemilihan moda transportasi antara angkutan bus AKDP dan kereta api *commuter supas* pada lintas Bangil - Surabaya. Berdasarkan analisis pola perjalanan, ditemukan bahwa zna dengan tujuan terbanyak ada pada zona XLVI (Kota Surabaya). Penggunaan bus AKDP dan kereta api *commuter supas* didominasi oleh kegiatan bekerja atau bisnis. Selain itu, analisis logit biner selisih dengan menggunakan data primer berupa wawancara menggunakan metode stated preference menunjukkan bahwa pemilihan moda transportasi dipengaruhi oleh faktor generalized cost yang nantinya akan dijelaskan menggunakan analisis deskriptif, dimana faktor waktu tempuh memiliki pengaruh paling signifikan dalam pemilihan moda kereta api dan diikuti oleh biaya perjalanan. Melalui studi ini, dapat dilihat bahwa ada potensi untuk mengoptimalkan penggunaan moda kereta api *Commuter Supas* dengan fokus pada aspek – aspek seperti penjadwalan dan penentuan tarif kereta api untuk rute bangil menuju Surabayaa, guna memenuhi harapan dan kebutuhan pengguna jasa.

Kata Kunci: Pola Perjalanan, Pemilihan Moda, Logit Biner Selisis.

PENDAHULUAN

Adanya pilihan dalam melakukan perjalanan menuju Kota Surabaya, diantaranya terdapat kendaraan pribadi dan angkutan umum. Dengan tingginya angka perjalanan dari dan/atau ke kabupaten Pasuruan berdasarkan hasil survei wawancara tepi jalan yag dilaksanakan oleh Tim PKL Kabupaten Pasuruan, dengan total masyarakat Kabupaten Pasuruan yang melakukan perjalanan ke Kota Surabaya ialah 148.467 orang tiap harinya, yang melakukan

perjalan dengan berbagai maksud yang berbeda - beda dengan total masyarakat yang melakukan perjalanan ke luar Kabupaten Pasuruan ialah 784.571 orang.

Dengan tingginya angka perjalanan yang ada akan menimbulkan berbagai pilihan dalam melakukan perjalan menuju Kota Surabaya, Banyak masyarakat Kabupaten Pasuruan dan Kota Surabaya yang melakukan perjalanan rutin untuk berbagai keperluan, baik itu untuk bekerja, belajar, atau keperluan lainnya. Untuk memenuhi kebutuhan berpergian ini, kabupetan Pasuruan menyediakan berbagai sarana transportasi, termasuk Terminla untuk layanan bus AKDP dan Stasiun Bangil untuk layanan kereta api commuter supas.

Meskipun terdapat dua pilihan utama pada moda transportasi ini, yaitu bus AKDP dan kereta api commuter supas, keputusan pemilihan moda transportasi oleh masyarakat merupakan suatu hal yang kompleks. Pemilihan ini dipengaruhi oleh berbagai faktor, termasuk aspek ekonomis, waktu perjalanan, kenyamanan, dan preferensi pribadi. Oleh karena itu, penting untuk memahami perilaku pengguna jasa dalam memilih moda transportasi di lintas Bangil – Surabaya..

METODE

Lokasi dalam penelitian ini berada di Kabupaten Pasuruan dengan wilayah kajian Terminal dan Stasiun Bangil. Waktu penelitian dilakukan mulai dari bulan Januari hingga bulan Juni yang merupakan proses penyusunan skripsi dari tahap awal sampai dengan seminar akhir skripsi. Penelitian ini dilakukan dengan pendekatan model pemilihan moda Logit Biner Selisih guna menggambarkan perilaku pengguna jasa dalam memilih moda yang akan digunakan untuk menggambarkan perilaku dalam memilih antara angkutan bus dan kereta api. Variabel yang digunakan adalah variabel kuantitatif berupa tarif, waktu tunggu dan waktu tempuh untuk masing – masing moda yang tergabung dalam generalized cost. Teknik mengumpulan data dilakukan dengan mengumpulkan data sekunder dan data primer dari hasil pengamatan dilapangan. Diawali dengan observasi untuk mengetahui kondisi pelayanan angkutan umum pada kedua jenis moda yang diamati. Wawancara menggunakan teknik survei Stated Preference dengan responden adalah pengguna jasa Bus AKDP dan Kereta Api Commuter Supas. Pada wawancara responden akan diminta untuk memilih beberapa pilihan kondisi alternatif yang disediakan dalam pelayanan dinyatakan dalam variabel kuantitatif yang terdiri dari tiga atribut yaitu biaya/ongkos, waktu di dalam kendaraan (in vehicle time), serta waktu di luar kendaraan (out of vehicle time).

Adapun Sampel pada penelitian ini menggunakan rumus Slovin dengan tujuan untuk mendapatkan objek penelitian dengan jumlah yang relative lebih sedikit dibandingkan dengan jumlah populasi namun tetap mewakili seluruh populasi yang ada, dengan rumus perhitungan berikut :

$$n = \frac{N}{1 + N(e)^2}$$

Keterangan:

n = Jumlah sampel

N = Populasi

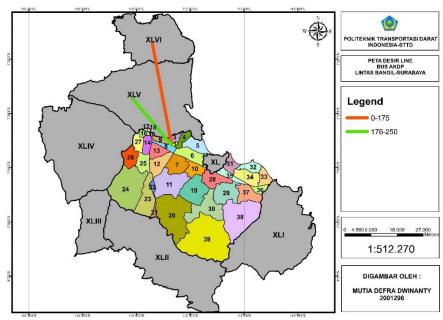
e = Standar *error* (Persentase kesalahan pengambilan sampel)

Populasi (N) diperoleh dari rata-rata penumpang naik dalam satu minggu, sehingga diperoleh jumlah sampel untuk bus AKDP ialah 174 orang dan kereta api commuter supas ialah 120..

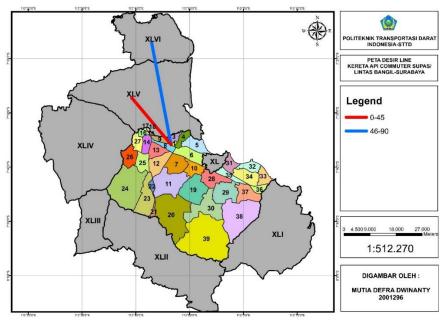
HASIL DAN PEMBAHASAN

Karakteristik Pemilihan Moda dan Pola Perjalanan

Dalam analisis Karakteristik berisi tentang data karekteristik yang terbagi menjadi karakteristik pelaku perjalanan dan karakteristik perjalanan. Karakteristik pelaku perjalanan berisikan mengenai informasi pribadi penumpang atau pengguna jasa dalam menentukan pilihannya untuk penggunaan moda dalam kehidupan sehari – hari. Karakateristik perjalanan berisi tentang faktor yang mempengaruhi pengguna jasa dalam menentukan pemilihan moda yang akan digunakan.


Table 1 Karakteristik Penumpang Bus AKDP

No	Data Kuesioner	Karakteris Pengguna	Persentase
1	Jenis Kelamin	Laki-Laki	54%
2	Usia	21 - 30 Tahun	34%
3	Pekerjaan	Pelajar/Mahasiswa	34%
4	Pendapatan	3jt-5jt	32%
5	Maksud Perjalanan Bisnis/Bekerja		41%
6	Alasan Pilihan Moda Cepat		38%


Table 2 Karakterisktik Penumpang Kereta Api Commuter Supas

No	Data Kuesioner	Karakteris Pengguna	Persentase
1	Jenis Kelamin	Laki-Laki	55%
2	Usia	21 - 30 Tahun	37%
3	Pekerjaan	Pelajar/Mahasiswa	31%
4	Pendapatan	< 1jt	32%
5	Maksud Perjalanan	Bisnis/Bekerja	39%
6	Alasan Pilihan Moda	Murah	31%

Sedangkan untuk analisis pola perjalanan penumpang berisi tentang produksi perjalana atau *trip production* ialah perjalanan yang didefinisikan sebagai awal dan akhir dari sebuah perjalanan. Data hasil analisis pola perjalan berasal dari survei wawancara berupa data asal penumpang serta tujuan dari perjalana yang sedang dilakukan. Sehingga nantinya akan diperoleh berupa data matrisk asal tujuan (*Matrikc Origin Destination*), yang nantinya akan menghasilkan peta *Desire Line* dari masing-masing wilayah kajian.

Gambar 1 Peta Desire Line Pola Perjalanan Penumpang Bus AKDP

Gambar 2 Peta Desire Line Pola Perjalanan Penumpang KA Commuter Supas

Berdasarkan hasil analisis pola perjalan penumpnag diketahui bahwa, perjalanan terbesar yang dilakukan oleh penumpang bu AKDP dengan tujuan zona XLVI (Kota Surabaya) yaitu sebanyak 236 penumpang. Perjalanan penumpang KA *Commuter* Supas bertujuan ke zona XLVI (Kota Surabaya) sebanyak 89 penumpang.:

Proposri Pemilihan Moda Bedasarkan Skenario

Menurut tamin suatu model dapat dikatakan baik jika hasil model tersebut dapat mencermintan realita secara tepat. Dari hasil uji regresi yang telah dilakukan, diperoleh beberapa data yang dapat mendeskripsikan pemilihan moda yang dilakukan oleh pengguna jasa dari angkutan bus AKDP dan kereta api. Variabel yang berpengaruh ialah variabel waktu tempuh, variabel waktu tunggu dan biaya perjalanan.

Table 3 Tabel Skenario Perjalanan

·		Bus AKDP			Kereta Api Commuter Supas			
No	Diava	Waktu	Waktu	Diava	Waktu	Waktu		
	Biaya	Tempuh	Tunggu	Biaya	Tempuh	Tunggu		
1	Rp. 20.000	60	15	Rp. 6000	101	20		
2	Rp. 20.000	60	15	Rp. 6000	101	15		
3	Rp. 20.000	60	15	Rp. 6000	91	20		
4	Rp. 20.000	60	15	Rp. 6000	91	15		
5	Rp. 20.000	60	15	Rp. 8000	91	20		
6	Rp. 20.000	60	15	Rp. 8000	81	15		
7	Rp. 20.000	60	15	Rp. 8000	81	20		
8	Rp. 20.000	60	15	Rp. 8000	81	15		

Analisis Model Logit Biner Selisih

Analisis Nilai Waktu

PENDAPATAN/BULAN	JUMLAH	RATA - RATA	TOTAL PENDAPATAN
<rp 1.000.000<="" td=""><td>84</td><td>Rp 1.000.000</td><td>Rp 84.000.000</td></rp>	84	Rp 1.000.000	Rp 84.000.000
Rp1.000.000-Rp3.000.000	56	Rp 2.000.000	Rp 112.000.000
Rp3.000.000-Rp 5.000.000	83	Rp 4.000.000	Rp 332.000.000
Rp 5.000.000-Rp 7.000.000	43	Rp 6.000.000	Rp 258.000.000
>Rp 7.000.000	28	Rp 8.000.000	Rp 238.000.000
TOTAL	294	Rp 21.500.000	Rp 1.024.000.000
RATA – RATA PENDAPATAN		Rp	3.482.993.20
ILAI WAKTU (VOT)		Rp	279.09

Nilai Waktu (VOT)
$$= \frac{\text{Rata-Rata Pendapatan}}{\text{Standar Jam Kerja Perbulan}}$$
$$= \frac{Rp \ 3,482,993.20}{26 \ x \ 8 \ x \ 60}$$
$$= \text{Rp 279.09/Menit}$$

Analisis Pembentukan Model

Penelitian ini dilakukan dengan menggunakan model logit biner selisih, yang diawali dengan pengumpulan data menggunakan survei wawancara dengan teknik Stated Preference dengan memeberikan beberapa alternatif pilihan yang idtawarkan dengan merubah beberapa atribut perjalanan sehingga dapat peprediksi respon dari para pengguna jasa.

Skenario 1 (Eksisting):

(Bus AKDP): Tarif Rp. 20.000, -Waktu Tunggu (OVT) 15 Menit, -

Waktu Tempuh (IVT) 60 Menit.

(Kereta Api): Tarif Rp. 6.000, -Waktu Tunggu (OVT) 20 Menit, -

Waktu Tempuh (IVT) 101 Menit.

Skenario 2 (Usulan):

(Bus AKDP): Tarif Rp. 20.000, -Waktu Tunggu (OVT) 15 Menit, -

Waktu Tempuh (IVT) 60 Menit.

(Kereta Api) : Tarif Rp. 6.000, -Waktu Tunggu (OVT) 15 Menit, -

Waktu Tempuh (IVT) 101 Menit.

Skenario 3:

(Bus AKDP): Tarif Rp. 20.000, -Waktu Tunggu (OVT) 15 Menit, -

Waktu Tempuh (IVT) 60 Menit.

(Kereta Api) : Tarif Rp. 6.000, -Waktu Tunggu (OVT) 20 Menit, -

Waktu Tempuh (IVT) 91 Menit.

Skenario 4:

(Bus AKDP): Tarif Rp. 20.000, -Waktu Tunggu (OVT) 15 Menit, -

Waktu Tempuh (IVT) 60 Menit.

(Kereta Api): Tarif Rp. 7.000, -Waktu Tunggu (OVT) 15 Menit, -

Waktu Tempuh (IVT) 91 Menit.

Skenario 5:

(Bus AKDP) : Tarif Rp. 20.000, -Waktu Tunggu (OVT) 15 Menit, -

Waktu Tempuh (IVT) 60 Menit.

(Kereta Api) : Tarif Rp. 7.000, -Waktu Tunggu (OVT) 20 Menit, -

Waktu Tempuh (IVT) 91 Menit.

Skenario 6:

(Bus AKDP): Tarif Rp. 20.000, -Waktu Tunggu (OVT) 15 Menit,

Waktu Tempuh (IVT) 60 Menit.

(Kereta Api): Tarif Rp. 7.000, -Waktu Tunggu (OVT) 15 Menit, -

Waktu Tempuh (IVT) 81 Menit.

Skenario 7:

(Bus AKDP): Tarif Rp. 20.000, -Waktu Tunggu (OVT) 15 Menit, -

Waktu Tempuh (IVT) 60 Menit.

(Kereta Api): Tarif Rp. 8.000, -Waktu Tunggu (OVT) 20 Menit, -

Waktu Tempuh (IVT) 81 Menit.

No.	Pilihan	Pilihan PPKA MPKA PB MPB PPB			tal Pilihan			
NO.	Alternatif	PPNA	WIFKA	PB	IVIPD	PPB	КА	BUS
1	Kondisi 1	0.16	0.09	0.12	0.07	0.02	0.43	0.57
2	Kondisi 2	0.17	0.12	0.09	0.06	0.01	0.45	0.55
3	Kondisi 3	0.25	0.19	0.09	0.04	0.01	0.57	0.43
4	Kondisi 4	0.28	0.17	0.09	0.04	0.01	0.58	0.42
5	Kondisi 5	0.27	0.16	0.10	0.04	0.01	0.57	0.43
6	Kondisi 6	0.28	0.16	0.11	0.04	0.01	0.60	0.40

No.	Pilihan	РРКА	МРКА	PR	РВ	PR	РВ МРВ	PPB	Total	Pilihan
INO.	Alternatif	FFRA	IVIFKA	PB	IVIPD	PPB	КА	BUS		
7	Kondisi 7	0.29	0.17	0.12	0.04	0.01	0.61	0.39		
8	Kondisi 8	0.27	0.18	0.12	0.04	0.01	0.61	0.39		

Biaya Gabungan

Biaya gabungan (generalized cost) adalah biaya total yang terdiri dari waktu dan biaya perjalanan. Waktu yang dinyatakan dalam bentuk uang (rupiah) dengan meggunakan nilai waktu untuk mengkonversikan waktu perjalanan ke dalam bentuk uang (rupiah).

Biaya Gabungan =
$$(VOT \times IVT) + (2 \times VOT \times OVT) + Tarif$$

No	Bus A	AKDP		Kereta Api Commuter Supas		Generalized Cost		
•	Biaya	IVT	OVT	Biaya	IVT	OVT	Bus AKDP	Commuter Supas
1	Rp 20.000	60	15	Rp 6.000	101	20	Rp 45.118	Rp 45.352
2	Rp 20.000	60	15	Rp 6.000	101	15	Rp 45.118	Rp 42.561
3	Rp 20.000	60	15	Rp 6.000	91	20	Rp 45.118	Rp 42.561
4	Rp 20.000	60	15	Rp 7.000	91	15	Rp 45.118	Rp 40.770
5	Rp 20.000	60	15	Rp 7.000	91	20	Rp 45.118	Rp 43.561
6	Rp 20.000	60	15	Rp 7.000	81	15	Rp 45.118	Rp 37.979
7	Rp 20.000	60	15	Rp 8.000	81	20	Rp 45.118	Rp 41.770
8	Rp 20.000	60	15	Rp 8.000	81	15	Rp 45.118	Rp 38.979

Setelah mengetahui masing-masing dari total biaya gabungan maka akan didapatkan selisih dari generalized cost dengan cara perhitungan sebagai berikut:

Selisih
$$C = CKA - Cbus$$

Proporsi Pilihan Moda

Menghitung proporsi pilihan diperoleh dari perbandingan antara proporsi pengguna jasa memilih kereta api commuter supas dengan pengguna jasa yang memilih bu AKDP.

PKA
$$\frac{(1 - Pkereta Api)}{Pkereta api} = \frac{(1 - 0.57)}{0.57} = 1.300$$

Skenario	Total	Pilihan	Proporsi Commuter Supas
Skellario	BUS	КА	(1-P2)/P2
1	0,43	0,57	1,300
2	0,45	0,55	1,224

Skenario	Total	Proporsi Commuter Supas	
Skellario	BUS	КА	(1-P2)/P2
3	0,57	0,43	0,767
4	0,58	0,42	0,717
5	0,57	0,43	0,741
6	0,60	0,40	0,676
7	0,61	0,39	0,632
8	0,61	0,39	0,646

Persamaan Regresi

Analisis regresi digunakan untuk mencari hubungan antar variabel yang sedang diteliti. Analisis regresi bertujuan untuk mengetahui ada atau tidaknya pengaruh dua atau lebih variabel bebas (X) terhadap variabel terikat (Y).

	Selisih	LN (1-P2/P2)
Skenario	(Cka - Cbus)	LN (1-F2/F2)
	X	Υ
1	0	-1,312
2	-3	-1,328
3	-3	-1,475
4	-4	-1,499
5	-1	-1,487
6	-7	-1,522
7	-4	-1,548
8	-6	-1,539

SUMMARY OUTP	UT							
Regression	Statistics							
Multiple R	0.773521982							
R Square	0.598336257							
Adjusted R Squar	0.531392299							
Standard Error	0.0207704							
Observations	8							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	1	0.003855881	0.003855881	8.93786805	0.024331946			
Residual	6	0.002588457	0.00043141					
Total	7	0.006444338						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-1.480490234	0.014819806	-99.89943184	6.7802E-11	-1.51675299	-1.444227475	-1.51675299	-1.444227475
X	0.01184119	0.00396076	2.989626741	0.02433195	0.002149563	0.021532824	0.002149563	0.021532824

Dari hasil input regresi pada tabel , diperoleh nilai koefisien intersep $\alpha = A = -1.4804$ dan koefisien regresi $\beta = B = 0.0118$. Yang digunakan untuk mencari probabilitas serta hubungan antara selisih total biaya gabungan dan selisih proporsi kereta api, dimana berdasarkan analisis regresi linear diperoleh :

- 1. R Square atau koefisien deteminasi sebesar 0,59 berarti 59% yang artinya terdapat hubungan yang dikategorikan moderat antara kedua variabel, berati 59% proporsi pemilihan kereta api *commuter supas* dipengaruhi oleh selisih total *generalized cost*, sedangkan 41% dipengaruhi oleh faktor lainnya.
- 2. Tingat signifikasinya <0,05 yaitu sebesar 0,024 yang berati variabel biaya gabungan berpengaruh nyata (signifikasi) terhadap proporsi pemilihan kereta api *commuter supas*.

Model Logit Biner Selisih

Berdasarkan nilai koefisien regresi β dan koefisien intersep α yang diketahui dengan proses regresi linear, kemudian model logit biner selisih proporsi pemilihan moda kereta api *commuter supas* dapat dibentuk sehingga probabilitas dari masing – masing proporsi kombinasi biaya gabungan dapat diketahui. Berikut ini merupakan bentuk formula dari model logit biner selisih:

$$P_1 = \frac{1}{1 + \exp(\alpha + \beta X)}$$

Skenario	Selisih (Cka - Cbus)	LN (1-P2/P2)	Proporsi KA	exp (α+βx)	Prob KA
-	х	Υ	(1-Pka)/Pka	_	1/(1+exp(α+β(C2-C1)
1	0	-1,312	1,300	0,2275	0,815
2	-3	-1,328	1,224	0,2196	0,820
3	-3	-1,475	0,767	0,2196	0,820
4	-4	-1,499	0,717	0,2170	0,822

Skenario _	Selisih (Cka - Cbus)	LN (1-P2/P2)	Proporsi KA	exp (α+βx)	Prob KA	
	х	Υ	(1-Pka)/Pka	_	1/(1+exp(α+β(C2-C1)	
5	-1	-1,487	0,741	0,2248	0,816	
6	-7	-1,522	0,676	0,2094	0,827	
7	-4	-1,548	0,632	0,2170	0,822	
8	-6	-1,539	0,646	0,2119	0,825	

Berdasarkan pada gambar V.24 didapatkan bahwa, apabila nilai selisih Cka - Cbus = 0, maka didapatkan probabilitas terpilihnya kereta api *commuter supas* sebesar 43% dan bus AKDP sebesar 57%. Apabila masing — masing moda memiliki probabilitas sebesar 50%, maka selisih *generalized cost* antara kedua moda tersebut adalah 10.000, berarti *generalized cost* kereta api *commuter supas* lebih tinggi dari pada bus AKDP.

Sensitivitas Model

Sensitivitas model merupakan uji yang berfungsi untuk mengtahui nilai probabilitas pemilihan moda kereta api *commuter supas* dengan mengubah nilai pada setiap variabel yang mempengaruhi perjalanan tanpa mengubah nilai variabel yang sesuai dengan dengan kondisi eksisting atau tetap, sehingga nantinya dapat diketahui satu variabel yang mempengaruhi atau sensitive terhadap pangguna dalam pemilihan moda yang akan digunakan. Sensitivitas model dilakukan dengan cara merubah salah satu indikator perjalanan

NO	Bus AKDP			Kereta Api		Generalized Cost		Selisih	Prob KA	Prob bus	
	Biaya	OVT	IVT	Biaya	OVT	IVT	BUS	KA	Cka - Cbus		1 - P1
1	20.000	15	60	3.000	20	101	Rp 45.118	Rp 42.352	-2.766	0,689	0,311
2	20.000	15	60	6.000	10	101	Rp 45.118	Rp 39.770	-5.348	0,661	0,339
3	20.000	15	60	6.000	15	56	Rp 45.118	Rp 30.002	-15.116	0,831	0,169
50%	20.000	15	60	3.000	10	56	Rp 45.118	Rp 24.211	-20.907	0,872	0,128

KESIMPULAN

- 1. Analisis karakteristik pengguna angkutan dalam pemilihan moda antara bus AKDP dan kereta api *commuter supas* lintas bangil Surabaya dapat disimpulkan bahwa, alasan pengguna dalam memilih moda kereta api *commuter supas* dikarenakan harga yang murah, sedangkan untuk alasan pemilihan moda bus AKDP ialah kecepatan waktu tempuh. Untuk maksud perjalanan kedua moda didominasi oleh bekerja atau bisnis. Pengguna bus AKDP dan kereta api didominasi oleh pengguna dengan rentang usia 21-30 tahun dengan pekerjaan pelajar atau mahasiswa. Sedangkan untuk pola perjalanan angkutan bus dan kereta api *commuter supas* pada lintas Bangil Surabaya, dapat diketahui bahwa perjalanan terbanyak bertujuan ke zona 46 (Kota Surabaya) sebanyak 236 penumpang. Dan perjalanan penumpang kereta api *commuter supas* terbesar bertujuan ke zona 46 (Kota Surabaya) sebanyak 89 penumpang.
- 2. Variabel yang mempengaruhi pemilihan moda untuk moda bus AKDP lintas Bangil menuju Surabaya adalah waktu tempuh sebesar 83% dan diikuti oleh biaya atau tarif. Sedangkan pada Kereta api *commuter supas* lintas Bangil menuju Surabaya adalah waktu tunggu sebesar 68% dan diikuti oleh waktu tempuh kendaraan.
- 3. Berdasarkan analisis Logit Biner Selisih didapatkan, saat nilai *generalized cost* Cka Cbus = 0, maka probabilitas terpilihnya moda Kereta api *commuter supas* sebesar 43% dan moda Bus AKDP sebesar 57%. Apabila masing masing moda memiliki probabilitas sebesar 50%, maka selisih *generalized cost* antara kedua moda tersebut adalah 10.00, berarti *generalized cost* kereta *commuter supas* lebih tinggi dari pada bus ADKP. Probabilitas pemilihan moda kereta api *commuter supas* tertinggi terdapat pada indikator skenario 6 dengan pilihan yang ditawarkan Tarif Rp. 7.000, -Waktu Tunggu (OVT) 15 Menit, dan Waktu Tempuh (IVT) 81 Menit.

SARAN

- 1. Mempertahankan kesesuain antara kepentingan dan kinerja yang telah dinilai baik pada pelayanan Bus AKDP dan Kereta Api *Commuter Supas* lintas Bangil Surabaya.
- 2. Apabila ingin menarik minat pengguna angkutan kereta api *commuter Supas*, maka indikator perubahan waktu tempuh merupakan indikator yang paling sensitive diikuti dengan tarif atau biaya perjalanan kereta api *commuter supas*. Untuk itu diperlukan kajian mendalam terkait dengan penjadwalan dan penentuan tarif kereta untuk rute Bangil menuju Surabaya.
- 3. Dari hasil analisis logit biner selisih, diperoleh proporsi dengan nilai sebesar 83% pada skenario 6, oleh karna itu disarankan pada *commuter supas* untuk menerapkan kondisi pelayanan yang ditawarkan dengan skenario 6, dengan Tarif Rp. 7.000, -Waktu Tunggu (OVT) 15 Menit, -Waktu Tempuh (IVT) 81 Menit.
- 4. Untuk meningkatkan analisis pada penelitian selanjutnya, perlu ditambahkan perhitungan fungsi utilitas pengguna moda yang digunakan untuk menghitung probabilitas pemilihan moda berdasarkan selisih utilitas/atribut perjalanan

REFERENSI

- Undang-Undang Republik Indonesia Nomor 23 Tahun 2007 Tentang Perkeretapian. (2007). Undang-Undang Republik Indonesia Nomor 22 Tahun 2009 Tentang Lalu Lintas Dan Angkutan Jalan. (2009).
- Peraturan Menteri Perhubungan Republik Indonesia Nomor PM 15 Tahun 2019 Tentang Penyelenggaraan Angkutan Orang Dengan Kendaraan Bermotor Umum Dalam Trayek. (2019).
- Alhogbi, Basma G. 2017. "Analisis Pemilihan Moda Transportasi Pada Terminal Pasar Pagi Kota Samarinda." *Journal of Chemical Information and Modeling* 53(9): 21–25. http://www.elsevier.com/locate/scp.
- BPS Kota Surabaya. 2021. "Pertumbuhan Ekonomi Kota Surabaya 2020." *Badan Pusat Statistik* (04): 6. https://surabayakota.bps.go.id/pressrelease/2021/03/18/236/pertumbuhan-ekonomi-kota-surabaya-2020.html.
- Gunawan, Herry. 2015. Pengantar Transportasi Dan Logistik.
- Hendrawan, M S, Ani Tjitra Handayani, Veronica Diana, dan Anis Anggorowati. 2020. "Bus Antar Kota Dan Kereta Api Jalur Jogja-Solo." 01(01): 103–10.
- Kaifan, Andrian, dan Fauzi A Gani. 2021. "Model Pemilihan Moda Antara Sepeda Motor Dan Bus Kota Di Kota Medan." *Jurnal Teknik Sipil* 13(1): 17–22.
- Manurung, pandu dewantara. 2018. "225824729."
- Miro, Fidel. 2005. Perencanaan Transportasi.
- Nawalul Azka, Cut, Rifki Hidayat, dan Wahyu Ramadhana. 2021. "Analisis Pemodelan Pemilihan Moda Transportasi Ke Kampus oleh Mahasiswa Universitas Muhammadiyah Aceh." *Tameh: Journal of Civil Engineering* 10(1): 1–8.
- Nugroho, bayu kusumo, dan nur misuari Wibowo. 2020. "Perencanaan Angkutan Pemadu Moda di Bandara H. Asan Kabupaten Kotawaringin Timur." *Jurnal Teknologi Transportasi dan Logistik* 2(1): 1–10.
- Nur, Nur Khaerat, Parea Rusan Rangan, dan Mahyuddin. 2021. 1 Gastronomía ecuatoriana y turismo local. *Sistem Transportasi*.
- Pasuruan, BPS Kabupaten. KABUPATEN PASURUAN DALAM ANGKA 2022.
- Prasetyo, Guruh Seto et al. 2023. "Pemilihan moda transportasi perjalanan kerja di desa karanggeneng boyolali." *Dinamika Teknik Sipil* 16(1): 37–42.
- RUXMANA, REZA NOVIAN. 2022. "Analisis Model Pemilihan Moda Transportasi Untuk Perjalanan Tanjungpinang Tanjung Uban Menggunakan Model Logit Biner Analisis Model Pemilihan Moda Transportasi Untuk Perjalanan Tanjungpinang Tanjung Uban." *Politeknik Transportasi Darat Indonesia Sttd*: 1–11.
- Sebagai, Disusun, Salah Satu, Syarat Untuk, dan Memperoleh Gelar. 2020. "Analisis Pemilihan Moda Transportasi Universitas Riau Dengan Metode Logit Biner."
- Sugiyono. 2017. Statistik untuk Penelitian.
- Tamin. 2000. Perencanaan dan Pemodelan Transportasi.
- Zakaria, Ahmad. 2018. "Analisis Pemilihan Moda Dari Mobil Pribadi Ke Bus." *Diaspora* 1(1): 11–20.